Synthesis, Spectroscopy, Antibacterial and Anti-inflammatory Studies of Homo and Hetero Bimetallic Complexes with Bifunctional (O, S) Ligand

Authors

  • Mafia Noreen Department of Chemistry, Lahore Garrison University, DHA Phase VI, Lahore, Pakistan
  • Shabbir Hussain Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
  • Muhammad Shahid Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad, Pakistan
  • Shazma Massey Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
  • Amina Asghar Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
  • Khurram Shahzad Munawar Department of Chemistry, University of Mianwali, 42200, Pakistan

DOI:

https://doi.org/10.53560/PPASB(62-2)1075

Keywords:

Homobimetallic (Sn, Sn), Heterobimetallic (Sn, Cd/Zn), Spectroscopy, TGA, Antibacterial, Anti-inflammatory

Abstract

Current studies were performed to synthesize homo- (Sn & Sn) and heteronuclear (Sn & Cd/Zn) complexes (1-7) of sarcosine dithiocarbamate and investigate their antibacterial and anti-inflammatory potential. Homobimetallic products, i.e., Ph2(Cl)SnSSCLSn(Cl)Me2 (1), Ph2(Cl)SnSSCLSn(Cl)Me3 (2), Ph2(Cl)SnSSCLSnBu3 (3) were produced by a reaction of sarcosine (HLH), CS2 and Ph2SnCl2 and then with Me2SnCl2, Me3SnCl and Bu3SnCl, respectively. Ph3SnSSCLSn(Cl)Bu2 (4) and Ph3SnSSCLSnMe3 (5) were produced by reacting HLH with KOH, CS2 and Ph3SnCl firstly and then with Bu2SnCl2 and Me3SnCl, respectively. The heteronuclear products, i.e., (Ph3SnSSCL)2Cd (6) and (Ph3SnSSCL)2Zn (7) were formed by reaction between HLH, KOH, CS2 and Ph3SnCl followed by treatment with CdCl2 or ZnCl2, respectively. Elemental analysis data was agreed well with the molecular composition of the products. Fourier transform infrared (FTIR) spectroscopy have shown the bidentate binding of carboxylate and dithiocarbamate donor sites of ligand. Proton nuclear magnetic resonance (1H NMR) spectroscopy of 3 displayed the expected signals of ligand portion and organotin(IV) moieties. TGA data of product 7 verified its heterobimetallic (2Sn, ZnO) composition. All the products except 4 and 6 exhibited significant antimicrobial activities as compared to free ligand. The highest anti-inflammatory potential was displayed by product 3.

References

1. M. Pervaiz, A. Sadiq, S. Sadiq, Z. Saeed, M. Imran, U. Younas, S.M. Bukhari, R.R.M. Khan, A. Rashid, and A. Adnan. Design and synthesis of Schiff base homobimetallic-complexes as promising antimicrobial agents. Inorganic Chemistry Communications 137: 109206 (2022).

2. Z. Fickenscher and E. Hey-Hawkins. Added complexity!-Mechanistic aspects of heterobimetallic complexes for application in homogeneous catalysis. Molecules 28(10): 4233 (2023).

3. S. Becker. Understanding Cooperativity in Homo‐and Heterometallic Complexes: From Basic Concepts to Design. ChemPlusChem 89(6): e202300619 (2024).

4. R.C. Nishad, S. Kumar, and A. Rit. Hetero-and Homobimetallic Complexes Bridged by a Bis (NHC) Ligand: Synthesis via Selective Sequential Metalation and Catalytic Applications in Tandem Organic Transformations. Organometallics 40(7): 915-926 (2021).

5. C.E. Czégéni, F. Joó, Á. Kathó, and G. Papp. Heterobimetallic Complexes of Bi-or Polydentate N-Heterocyclic Carbene Ligands and Their Catalytic Properties. Catalysts 13(11): 1417 (2023).

6. M.M. Ebrahium. New homo‐bimetallic complexes of dihydrazone‐oxime ligand incorporating isatinic moiety: Preparation, characterization, theoretical, microbicidal, and anticancer investigation. Applied Organometallic Chemistry 37(8): e7137 (2023).

7. B.G. Cooper, J.W. Napoline, and C.M. Thomas. Catalytic applications of early/late heterobimetallic complexes. Catalysis Reviews 54(1): 1-40 (2012).

8. L.H. Gade, H. Memmler, U. Kauper, A. Schneider, S. Fabre, I. Bezougli, M. Lutz, C. Galka, I.J. Scowen, and M. McPartlin. Cooperative Reactivity of Early‐Late Heterodinuclear Transition Metal Complexes with Polar Organic Substrates. Chemistry-A European Journal 6(4): 692-708 (2000).

9. V. Balzani, A. Juris, M. Venturi, S. Campagna, and S. Serroni. Luminescent and redox-active polynuclear transition metal complexes. Chemical Reviews 96(2): 759-834 (1996).

10. D. O'Hare, In Inorganic Materials, ; Bruce, DW; O'Hare, D., Eds. 1992, Wiley Interscience: Chichester.

11. G.L. Geoffroy. Synthesis, molecular dynamics, and reactivity of mixed-metal clusters. Accounts of Chemical Research 13(12): 469-476 (1980).

12. E.R. Tiekink. Tin dithiocarbamates: applications and structures. Applied Organometallic Chemistry 22(9): 533-550 (2008).

13. S.M. Abbas, S. Ali, S.T. Hussain, and S. Shahzadi. structural diversity in organotin (IV) dithiocarboxylates and carboxylates. Journal of Coordination Chemistry 66(13): 2217-2234 (2013).

14. S. Shahzadi and S. Ali. Structural chemistry of organotin (IV) complexes. Journal of the Iranian Chemical Society 5(1): 16-28 (2008).

15. R. Khan, S. Rani, M. Tariq, F. Rasool, A. Hussain, K. Mahmood, H.M. Asif, M. Usman, and M. Sirajuddin. Experimental and theoretical studies on new organotin (IV) complexes with oxygen donor ligand: DNA binding, molecular docking and antimicrobial activity. Journal of Chemical Sciences 135(3): 90 (2023).

16. B. Parveen, S. Shahzadi, S. Ali, M. Feizi-Dehnayebi, K.S. Munawar, M. Ashfaq, and M.N. Tahir. Synthesis, spectral characterizations, computational studies and biological investigation of 4-(4-(2-hydroxyethyl) phenylamino)-4-oxobutanoic acid and its trimethyltin (IV) complex. Journal of Molecular Structure 1315: 138851 (2024).

17. J.O. Adeyemi and D.C. Onwudiwe. Organotin (IV) dithiocarbamate complexes: Chemistry and biological activity. Molecules 23(10): 2571 (2018).

18. J.O. Adeyemi, D.C. Onwudiwe, and M. Singh. Synthesis, characterization, and cytotoxicity study of organotin (IV) complexes involving different dithiocarbamate groups. Journal of Molecular Structure 1179: 366-375 (2019).

19. S. Rahim, A. Sadiq, A. Javed, M. Kubicki, B. Kariuki, M. Assad, N. Muhammad, N. Fatima, M. Khan, and A.F. Alasmari. In vitro anticancer, antioxidant, antimicrobial, antileishmanial, enzymes inhibition and in vivo anti-inflammatory activities of organotin (IV) derivatives of 4-bromophenoxyacetic acid. Journal of Molecular Structure 1313: 138703 (2024).

20. M. Dodokhova, I. Kotieva, M. Alkhusein-Kulyaginova, V. Kotieva, E. Kotieva, D. Berseneva, D. Shpakovsky, N. Silin, M. Gulyan, and E. Milaeva. Organotin Complexes—Candidates for Antitumor Agents: Toxicity vs. Pharmaceutical Activity. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry 19(1): 1-20 (2025).

21. M. Hoch. Organotin compounds in the environment—an overview. Applied Geochemistry 16(7-8): 719-743 (2001).

22. C.E. Carraher Jr and M.R. Roner. Organotin polymers as anticancer and antiviral agents. Journal of Organometallic Chemistry 751: 67-82 (2014).

23. S. Rahim, A. Sadiq, A. Javed, A. Noor, N. Muhammad, M. Ibrahim, S. Qayyum, K. Ayub, N. Fatima, and S. Sarfaraz. Synthesis, characterization, enzyme inhibition, antioxidant, anticancer and antimicrobial potential of organotin (IV) derivatives of 4-fluorophenoxyacetic acid. Arabian Journal of Chemistry 17(4): 105698 (2024).

24. Z. Al Talebi, A.S. Farhood, and A.G. Hadi. A comprehensive review of organotin complexes: synthesis and diverse applications. Cancer Cell 8: 20 (2023).

25. S. Blunden, P. Cusack, and R. Hill (Eds.). The Industrial Uses of Tin Chemicals. Royal Society of Chemistry, London (1985).

26. S.J. Blunden and C.J. Evans. Organotin Compounds. In: Anthropogenic Compounds. F. Adams, S.J. Blunden, R. Cleuvenbergen, C.J. Evans, L. Fishbein, U.-J. Rickenbacher, C. Schlatter, and A. Steinegger (Eds.). Springer pp. 1-44 (1990).

27. R. Singh, P. Chaudhary, and N. Kaushik. A Review: Organotin compounds in corrosion inhibition. Reviews in Inorganic Chemistry 30(4): 275-294 (2010).

28. S. Iftikhar, S. Hussain, S. Murtaza, D. Ali, S. Yousuf, M.A. Ali, A. Haider, M. Shahid, A.M. Alsuhaibani, and M.S. Refat. Synthetic route for O, S‐coordinated organotin (IV) aldehydes: Spectroscopic, computational, XRD, and antibacterial studies. Applied Organometallic Chemistry 38(8): e7581 (2024).

29. M. Safdar, S.A. Naqvi, F. Anjum, I. Pasha, M. Shahid, M.J. Jaskani, I.A. Khan, and R.M. Aadil. Microbial biofilm inhibition, antioxidants and chemical fingerprints of Afghani pomegranate peel extract documented by GC‐MS and FTIR. Journal of Food Processing and Preservation: e15657 (2021).

30. L. Williams, A. O'connar, L. Latore, O. Dennis, S. Ringer, J. Whittaker, J. Conrad, B. Vogler, H. Rosner, and W. Kraus. The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Medical Journal 57(4) (2008).

31. S. Hussain, I.H. Bukhari, S. Ali, S. Shahzadi, M. Shahid, and K.S. Munawar. Synthesis and spectroscopic and thermogravimetric characterization of heterobimetallic complexes with Sn (IV) and Pd (II); DNA binding, alkaline phosphatase inhibition and biological activity studies. Journal of Coordination Chemistry 68(4): 662-677 (2015).

32. S. Hussain, S. Ali, S. Shahzadi, S.K. Sharma, K. Qanungo, and M. Shahid. Synthesis, characterization, semiempirical and biological activities of organotin (IV) carboxylates with 4-piperidinecarboxylic acid. Bioinorganic Chemistry and Applications 2014: 959203 (2014).

33. G. Deacon and R. Phillips. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coordination Chemistry Reviews 33(3): 227-250 (1980).

34. S. Hussain, S. Ali, S. Shahzadi, S.K. Sharma, K. Qanungo, M. Altaf, and H.S. Evans. Synthesis, characterization, and semi-empirical study of Organotin (IV) complexes with 4-(Hydroxymethyl) piperidine-1-carbodithioic Acid: X-ray structure of Chlorodimethyl-(4-hydroxymethyl piperidine-1-carbodithioato-S, S′) tin (IV). Phosphorus, Sulfur, and Silicon and the Related Elements 186(3): 542-551 (2011).

35. F. Bonati and R. Ugo. Organotin (iv) n, n-disubstituted dithiocarbamates. Journal of Organometallic Chemistry 10(2): 257-268 (1967).

36. S.S. Konstantinović, B.C. Radovanović, S.P. Sovilj, and S. Stanojević. Antimicrobial activity of some isatin-3-thiosemicarbazone complexes. Journal of the Serbian Chemical Society 73(1): 7-13 (2008).

37. B. Parveen, I.H. Bukhari, S. Shahzadi, S. Ali, S. Hussain, K.G. Ali, and M. Shahid. Synthesis and spectroscopic characterization of mononuclear/binuclear organotin (IV) complexes with 1H-1, 2, 4-triazole-3-thiol: Comparative studies of their antibacterial/antifungal potencies. Journal of the Serbian Chemical Society 80(6): 755-766 (2015).

38. M. Claudel, J.V. Schwarte, and K.M. Fromm. New antimicrobial strategies based on metal complexes. Chemistry 2(4): 849-899 (2020).

39. K. Tahira, S. Ali, S. Shahzadi, S.K. Sharma, and K. Qanungo. Bimetallic organotin (IV) complexes with ferrocene-based azomethines: synthesis, characterization, semi-empirical study, and antibacterial activity. Journal of Coordination Chemistry 64(11): 1871-1884 (2011).

40. A. Boora, J. Devi, B. Kumar, and B. Taxak. Organotin (IV) complexes of tridentate (ONO) hydrazone ligands: synthesis, spectral characterization, antituberculosis, antimicrobial, anti-inflammatory, molecular docking and cytotoxicity studies. BioMetals 38(1): 153-171 (2025).

Downloads

Published

2025-06-06

How to Cite

Mafia Noreen, Shabbir Hussain, Muhammad Shahid, Shazma Massey, Amina Asghar, & Khurram Shahzad Munawar. (2025). Synthesis, Spectroscopy, Antibacterial and Anti-inflammatory Studies of Homo and Hetero Bimetallic Complexes with Bifunctional (O, S) Ligand. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 62(2), 167–175. https://doi.org/10.53560/PPASB(62-2)1075

Issue

Section

Research Articles

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.