Community Composition of Beetles (Insecta: Coleoptera) along Elevational Gradients in Phulchowki Hill, Lalitpur, Nepal

Authors

DOI:

https://doi.org/10.53560/PPASB(59-2)712

Keywords:

Abundance, Biodiversity conservation, Pitfall traps, Season, Species richness

Abstract

Beetles are recognized as important bio-indicators of the ecosystem that can be used to determine species diversity, genetic diversity and ecosystem diversity. We investigated the species composition and diversity of beetles in four seasons along elevational gradients in Phulchowki hill from June 2018 to May 2019. Sampling was done using pitfall traps in five sites located at 1500 m, 1800 m, 2100 m, 2400 m and 2700 m altitude respectively. Overall, we documented 43 morphospecies under 37 genera and 12 families from the study area. Scarabaeidae was the most dominant family whereas Onthophagus sp.2 being the most abundant species in our study. The Shannon-Weiner diversity index, species richness and abundance were highest at 1500 m. Furthermore, diversity and species richness were highest in the spring, whereas peak beetle abundance was observed in summer. Principal component analysis (PCA) was performed to analyze the distribution patterns of the beetle families along the elevational gradients. PCA revealed a strong association of the Carabidae family with 1500 m, 1800 m and 2100 m altitude whereas the Scarabaeidae family were mostly associated with human-influenced areas such as 1500 m and 2700 m altitude. The generalized linear model (GLM) revealed that temperature had a major impact on the overall beetle composition.

Author Biographies

Sushma Dhakal, Amrit Campus

Department of Zoology

Nabin Budhathoki, Amrit Campus

Department of Zoology

Indra Prasad Subedi, Tribhuvan University

Central Department of Zoology, Institute of Science and Technology

References

R. Rossa, and J. Goczał. Global diversity and distribution of longhorn beetles (Coleoptera: Cerambycidae). The European Zoological Journal 88(1): 289-302 (2021). DOI:10.1080/24750263.2021.1883129

S. Q. Zhang et al. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nature Communications 9(1): 205 (2018). DOI:10.1038/s41467-017-02644-4

M. Banerjee Diversity and Composition of Beetles (Order: Coleoptera) of Durgapur, West Bengal, India. Psyche: A Journal of Entomology 2014: 1–6 (2014). DOI:10.1155/2014/792746

M. Pentinsaari., P. D. N. Hebert, and M. Mutanen. Barcoding Beetles: A Regional Survey of 1872 Species Reveals High Identification Success and Unusually Deep Interspecific Divergences. PLoS ONE 9(9): e108651 (2014). DOI:10.1371/journal.pone.0108651

P. Bouchard et al. Family-group names in Coleoptera (Insecta). Zookeys 88(1): 1–972 (2011). DOI:10.9837/zookeys.88.807

S. J. Grove, and N. E. Stork. An inordinate fondness for beetles. Invertebrate Systematics 14(6): 733-739 (2000). DOI: 10.1071/it00023

V. K. Thapa. Insect diversity in Nepal. VK Thapa Publication, Nepal (2015).

M. M. Musthafa, and F. Abdullah. Coleoptera of Genting Highland, Malaysia: Species richness and diversity changes along the elevations. Arxius de Miscel·lània Zoològica 17: 123–144 (2019a). DOI:10.32800/amz.2019.17.0123

R. J. Cajaiba., E. Périco., J. A. Cabral, and M. Santos. Assessing the Potential Role of Ground Beetles (Coleoptera) as Ecological Indicators in Tropical Ecosystems: A Review. In: Beetles: Biodiversity, ecology and role in the environment. C. Stack (Ed.), Nova Science Publishers, New York, pp. 51–84 (2014).

A. D. Barnosky et al. Has the Earth’s sixth mass extinction already arrived? Nature 471: 51–57 (2011). DOI: 10.1038/nature09678.

W. R. Morrison., J. T. Waller., A. C. Brayshaw., D. A. Hyman., M. R. Johnson, and A. M. Fraser. Evaluating Multiple Arthropod Taxa as Indicators of Invertebrate Diversity in Old Fields. Great Lakes Entomologist 45: 56–68 (2012).

G. Ceballos., P. R. Ehrlich., A. D. Barnosky., A. García., R. M. Pringle, and T. M. Palmer. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances 1(5): e1400253 (2015). DOI: 10.1126/sciadv.1400253.

C. D. Thomas. Climate, climate change and range boundaries. Diversity and Distributions 16: 488–495 (2010). DOI:10.111 1/j.1472-4642.2010.00642.x

M. M. Musthafa., F. Abdullah, and U. J. Sánchez-Reyes. Comparative study of spatial patterns and ecological niches of beetles in two Malaysian mountains elevation gradients. Journal of insect conservation 22: 757-769 (2018). DOI: 10.1007/s10841-018-0099-z

W. B. Li et al. Community composition and diversity of ground beetles (Coleoptera: Carabidae) in Yaoluoping National Nature Reserve. Journal of Insect Science 17(6): 114 (2017). DOI:10.1093/jisesa/iex081

J. W. Barretto., C. A. Cultid-Medina, and F. Escobar. Annual abundance and population structure of two dung beetle species in a human modified landscape. Insects 10(1): 2 (2019). DOI:10.3390/insects10010002

A. C. C. Bernardes et al. Abundance and diversity of beetles (Insecta: Coleoptera) in land use and management systems. Revista Brasileira de Ciencia do Solo 44: e0190183 (2020). DOI:10.36783/18069657rbcs20190183

T. Molnár., T. Magura., B. Tóthmérész, and Z. Elek. Ground beetles (Carabidae) and edge effect in oak-hornbeam forest and grassland transects. European Journal of Soil Biology 37(4): 297-300 (2001). DOI:10.1016/S1164-5563(01)01103-7

C. Körner. The use of “altitude” in ecological research. Trends in Ecology and Evolution 22(11): 569–574 (2007). DOI:10.1016/j.tree.2007.09.006

E. Grant., A. B. Brand., S. De Wekker., T. R. Lee, and J. Woford. Evidence that climate sets the lower elevation range limit in a high-elevation endemic salamander. Ecology and Evolution 8(15): 7553–7562 (2018).

S. Fattorini., C. Mantoni., L. Di Biase., G. Strona., L. Pace, and M. Biondi. Elevational patterns of generic diversity in the tenebrionid beetles (Coleoptera Tenebrionidae) of Latium (Central Italy). Diversity 12(47) (2020). DOI:10.3390/d12020047

C. A. Nunes., R. F. Braga., J. E. C. Figueira., F. S. Neves, and G. W. Fernandes. Dung beetles along a tropical altitudinal gradient: Environmental filtering on taxonomical functional diversity. PLoS ONE 11(6): e0157442 (2016). DOI:10.1371/journal.pone.0157442

G. F. Ficetola., F. Mazel, and W. Thuiller. Global determinants of zoogeographical boundaries. Nature Ecology & Evolution 1: 0089 (2017).

V. S. Merckx et al. Evolution of endemism on a young tropical mountain. Nature 524: 347–350 (2015).

Y. Zou. Insect diversity patterns along environmental gradients in temperate forests of Northern China. PhD Thesis. Department of Geography, University College London, London (2014).

M. Campos-Cerqueira, and T. M Aide. Changes in the acoustic structure and composition along a tropical elevational gradient. Journal of Ecoacoustics 1(1): 4 (2017). DOI: 10.22261/JEA.PNCO7I

C. M. McCain, and J. A. Grytnes. Elevational gradients in species richness. Encyclopedia of Life Sciences (2010). DOI: 10.1002/9780470015902.a0022548.

J. Hortal, L. M. Carrascal., K. A. Triantis., E. Thébault., S. Meiri, and S. Sfenthourakis. Species richness can decrease with altitude but not with habitat diversity. Proceedings of the National Academy of Sciences 110(24): 2149–2150 (2013). DOI:10.1073/pnas.1301663110

E. Despland., R. Humire, and S. S. Martin. Species richness and phenology of butterflies along an altitude gradient in the desert of Northern Chile. Arctic, Antarctic and Alpine Research 44(4): 423-431 (2012). DOI: 10.1657/1938-4246-44.4.423

J. Beck et al. Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths. Global Ecology and Biogeography 26(4): 412-424 (2017).

A. Arriaga-Jime´nez., M. Rös, and G. Halffter. High variability of dung beetle diversity patterns at four mountains of the Trans-Mexican Volcanic Belt. PeerJ 6(1) (2018). DOI 10.7717/peerj.4468

T. R. Bishop., M. P. Robertson., B. J. van Rensburg, and C. L. Parr. Elevation–diversity patterns through space and time: ant communities of the Maloti‐Drakensberg Mountains of southern Africa. Journal of Biogeography 41(12): 2256-2268 (2014).

C. J. Lasmar et al. Disentangling elevational and vegetational effects on ant diversity patterns. Acta Oecologica 102: 103489 (2020).

P. Subedi, and P. B. Budha. Diversity and distribution patterns of ants along elevational gradients. Nepalese Journal of Zoology 4(1): 44-49 (2020). DOI:10.3126/njz.v4i1.30672

Poudyal. Plant water relations and drought adaptations of Schima wallichii at Phulchowki Hill, Nepal. Scientific World 12(12): 79 (2014). DOI:10.3126/sw.v12i12.13603

P. Gaudel. Beetles on oak (Quercus lanata) canopy in Shivapuri National Park and Naudhara Community Forest, Nepal. M.Sc. Thesis. Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal (2016).

M. Gobbi., Á. Barragán., M. Brambilla., E. Moreno., W. Pruna, and P. Moret. Hand searching versus pitfall trapping : how to assess biodiversity of ground beetles (Coleoptera : Carabidae) in high altitude equatorial Andes. Journal of Insect Conservation 22: 533-543 (2018). DOI:10.1007/s10841-018-0082-8

T. Skalski., R. Kedzior., W. Maciejowski, and A. Kacprzak. Soil and habitat preferences of ground beetles (Coleoptera, Carabidae) in natural mountain landscape. Baltic Journal of Coleopterology 11(2): 105–115 (2011).

C. H. Lindroth. Coleoptera, Carabidae. Handbooks for the identification of British insects. Royal Entomological Society of London, United Kingdom 4(2): 148 (1974).

F. Lawrence, and A. F. Newton. Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-group names). In: Biology, Phylogeny, and Classification of Coleoptera: Papers Celebrating the 80th Birthday of R. A. Crowson. J. Pakaluk, and S.A. Slipinski, (Ed.), Muzeum i Instytut Zoologii PAN, Warszawa, Poland, pp. 779–1006 (1995).

C. A. Triplehorn, and N. F. Johnson. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Brooks and Cole Publishers, Belmont, California, pp. 864 (2005).

S. Kimoto. Systematic Catalog of the Chrysomelidae (Coleoptera) from Nepal and Bhutan. Bulletin of the Kitakyushu Museum of Natural History and Human History Series A 3: 13–114 (2005).

J. H. Zar. Biostatistical analysis. 5th ed. Pearson Prentice-Hall, Upper Saddle River, New Jersey, pp. 944 (2010).

D, Omayio, and E. Mzungu. Modification of Shannon-Weiner diversity index towards quantitative estimation of environmental wellness and biodiversity levels under a non-comparative scenario. Journal of Environment and Earth Science 9(9) (2019). DOI: 10.7176/JEES/9-9-06

A. F. Zuur., I. N. Ieno, and N. J. Walker. Mixed effects models and extensions in ecology with R. Springer 524 (2009).

J. Oksanen et al. Package “vegan”: Community Ecology Package. R Package version 2.4-4 (2017). https://CRAN.R-project.org/package¼vegan.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2018). www.R-project.org/

D. Satheesha., A. J. Nikhath., M. M. Vrushali., F. C. Jayaraj, and G. Sreenivasa. Preliminary study on composition and diversity of beetles (Order- Coleoptera) in and around Davangere University Campus, Davangere, Karnataka. Journal of Entomology and Zoology Studies 6(4): 1751-1758 (2018).

R. Jain, and I. Mittal. Diversity, faunal composition and conservation assessment of dung beetles (Coleoptera: Scarabaeidae) in two reserve forests of Haryana (India). Faunistic Entomology 65: 69–79 (2012).

M. Musthafa., F. Abdullah., P. A. Martínez Falcón, and M. de Bruyn. How mountains and elevations shape the spatial distribution of beetles in peninsular Malaysia. Scientific Reports 11(1): 5791 (2021). DOI: 10.1038/s41598-021-84965-5

F. Gebert., I. Steffan-Dewenter., P. Moretto, and M. K. Peters. Climate rather than dung resources predict dung beetle abundance and diversity along elevational and land-use gradients on Mt. Kilimanjaro. Journal of Biogeography 47(2): 371–381 (2019). DOI:10.1111/jbi.13710

T. Hirao., M. Murakmi., A. Kashizaki, and S. I. Tanabe. Additive apportioning of lepidopteran and coleopteran species diversity across spatial and temporal scales in a cool-temperate deciduous forest in Japan. Ecological Entomology 32: 627–636 (2007). DOI:10.1111/j.1365-2311.2007.00913.x

R. M. Moraes., M. S. Mendonça, and R. Ott. Carabid beetle assemblages in three environments in the Araucaria humid forest of southern Brazil. Revista Brasileira de Entomologia 57(1): 67–74 (2013). DOI:10.1590/S0085-56262013000100011

P. Basu., G. Aditya, and A. K. Sanyal. Community structure of Coleoptera in Bethuadahari wildlife sanctuary, West Bengal, India. Checklist 13(3): 1-8 (2017). DOI:10.15560/13.3.2154

R. Jaskuła, and A. Stępień. Ground beetle fauna (Coleoptera: Carabidae) of protected areas in the Łódź Province. Part I: nature reserves. Fragmenta Faunistica 55: 101–122 (2012).

A. Ohwaki., Y. Kaneko, and H. Ikeda. Seasonal variability in the response of ground beetles (Coleoptera: Carabidae) to a forest edge in a heterogeneous agricultural landscape in Japan. European Journal of Entomology 112: 135–144 (2015). DOI:10.14411/eje.2015.022

K. H. Cameron, and S. R. Leather. How good are carabid beetles (Coleoptera, Carabidae) as indicators of invertebrate abundance and order richness? Biodiversity and Conservation 21: 763–779 (2012). DOI:10.1007/s10531-011-0215-9

D. Óhuallachain., A. Anderson., R. Fritch., S. McCormack., H. Sheridan, and J. A. Finn. Field margins: a comparison of establishment methods and effects on hymenopteran parasitoid communities. Insect Conservation and Diversity 7: 289–307 (2014). DOI:10.1111/icad.12053

K. Franin., B. Barić, and G. Kuštera. The role of ecological infrastructure on beneficial arthropods in vineyards. Spanish Journal of Agricultural Research 14(1): e0303 (2016). DOI:10.5424/j.sjar.2016141-7371

J. Schirmel., J. Thiele., M. H. Entling, and S. Buchholz. Trait composition and functional diversity of spiders and carabids in linear landscape elements. Agriculture Ecosystems and Environment 235: 318–328 (2016). DOI:10. 1016/j.agee.2016.10.028

M. Musthafa, and F. Abdullah. Beetles Species Richness along Environmental Gradients at Montane Ecosystem in Fraser’s Hill, Peninsular Malaysia. Sains Malaysiana 48(7): 1395–1407 (2019b). DOI:10.17576/jsm-2019-4807-08

F. Barragán., C. E. Moreno., F. Escobar., G. Halffter, and D. Navarrete. Negative impacts of human land use on dung beetle functional diversity. PLoS ONE 6(3): e17976 (2011).

P. G. Silva., F. Z. Vaz-de-mello, and R. A. Di Mare. Diversity and seasonality of Scarabaeinae (Coleoptera: Scarabaeidae) in forest fragments in Santa Maria, Rio Grande do Sul, Brazil. Anais da Academia Brasileira de Ciências 85(2): 679-697 (2013). DOI:10.1590/s0001-37652013005003313

C. W. Wardhaugh., M. J. Stone, and N. E. Stork. Seasonal variation in a diverse beetle assemblage along two elevational gradients in the Australian Wet Tropics. Scientific Reports 8(1): 8559 (2018). DOI:10.1038/s41598-018- 26216-8.

K. Arya., P. Tamta, and Dayakrishna. Study on distribution and diversity of beetles (Insecta: Coleoptera) in different elevational zones of Binsar wildlife sanctuary, Almora, Uttarakhand, India. Journal of Entomology and Zoology Studies 4(4): 311-316 (2016).

C. P. Oliveira, C. M. Oliveira, A. Specht, and M. R. Frizzas. Seasonality and distribution of Coleoptera families (Arthropoda, Insecta) in the Cerrado of Central Brazil. Revista Brasileira de Entomologia 65(3): e20210025 (2021). DOI:10.1590/1806-9665-RBENT-2021-0025

A. S. Al-Digail., I. A. Assagaf, and A. J. Mahyoub. Effect of temperature and humidity on the population abundance of spotted oriental cucumber beetle Epilachna chrysomelina (F.) (Coccinellidae: Coleoptera) in Al-Qunfudah Western Saudi Arabia. Current World Environment 7(1): 7-12 (2012).

M. Nummelin, and L. Nshubemuki. Seasonality and structure of the arthropod community in a forested valley in the Uluguru Mountains, Eastern Tanzania. Journal of East African Natural History 87: 205-212 (1998).

J. Rainio. Seasonal variation of Carabid beetle (Coleoptera: Carabidae) abundance and diversity in Ranomafana National Park, Madagascar. Journal of Entomology and Zoological Studies 1(5): 92–98 (2013).

J. Louzada, and F. Lopes. A comunidade de Scarabaeidae copro-necrófagos (Coleoptera) um fragmento de Mata Atlântica. The Revista Brasileira de Entomologia 41: 117- 121 (1997).

D. L. Price. Species diversity and seasonal abundance of scarabaeoid dung beetles (Coleoptera: Scarabaeidae, Geotrupidae and Trogidae) attracted to cow dung in Central New Jersey. Journal of the New York Entomological Society 112(4): 334–347 (2004). DOI:10.1664/0028-7199(2004)112[0334:sdasao]2.0.co;2

M. I. M. Hernández, and Z. F. Vaz-de-Mello. Seasonal and spatial species richness variation of dung beetle (Coleoptera, Scarabaeidae s. str.) in the Atlantic Forest of southeastern Brazil. Revista Brasileira de Entomologia 53(4): 607–613 (2009). DOI:10.1590/S0085-56262009000400010

Downloads

Published

2022-08-18

How to Cite

Dhakal, S., Budhathoki, N., & Subedi, I. P. . (2022). Community Composition of Beetles (Insecta: Coleoptera) along Elevational Gradients in Phulchowki Hill, Lalitpur, Nepal. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 59(2), 49–64. https://doi.org/10.53560/PPASB(59-2)712

Issue

Section

Research Articles