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Abstract: Beetles are recognized as important bio-indicators of the ecosystem that can be used to determine species 
diversity, genetic diversity, and ecosystem diversity. We investigated the species composition and diversity of beetles 
in four seasons along elevational gradients in Phulchowki hill from June 2018 to May 2019. Sampling was done 
using pitfall traps in five sites located at 1500 m, 1800 m, 2100 m, 2400 m, and 2700 m altitude respectively. Overall, 
we documented 43 morphospecies under 37 genera and 12 families from the study area. Scarabaeidae was the most 
dominant family whereas Onthophagus sp. 2 was the most abundant species in our study. The Shannon-Weiner diversity 
index, species richness and abundance were highest at 1500 m. Furthermore, diversity and species richness were 
highest in the spring, whereas peak beetle abundance was observed in summer. Principal component analysis (PCA) 
was performed to analyze the distribution patterns of the beetle families along the elevational gradients. PCA revealed 
a strong association of the Carabidae family with 1500 m, 1800 m, and 2100 m altitude whereas the Scarabaeidae 
family was mostly associated with human-influenced areas such as 1500 m and 2700 m altitude. The generalized linear 
model (GLM) revealed that temperature had a major impact on the overall beetle composition. Our study could set 
the standards for the research community to carry out conservation efforts on beetle diversity at different elevational 
ranges in the hill region.
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1. INTRODUCTION

Beetles (Insecta: Coleoptera) are dominant 
worldwide, constituting nearly a quarter of all 
known fauna [1]. They form great biodiversity 
in different habitats and play significant roles in 
the functioning of the ecosystem [2]. They occur 
in all major habitats, except for the Polar and 
marine habitats, and are economically important 
as agricultural and household pests or predators 
[3]. About 400,000 species of beetles have been 
identified worldwide [4] representing 211 families 
[5], with many more species yet to be discovered 
[6]. Sixty-three beetle families have been formally 
recorded from Nepal [7].

Beetles are recognized as important bio-
indicators of the ecosystem that can be used to 

determine species diversity, genetic diversity, and 
ecosystem diversity [8]. A high diversity of beetles 
often indicates high diversity of other elements 
in an ecosystem [9]. Therefore, it is critical to 
understand global diversity and distribution 
patterns for assessing the status of overall 
biodiversity in the present crisis of mass extinction 
[10-12]. Furthermore, ground layer beetles show 
a wide range of distribution patterns in terms of 
geographical regions, climatic conditions, and 
vegetation patterns [13, 14] and are sensitive to 
environmental change [15-17]. Abundance, species 
richness, and composition of ground beetles are 
affected by the presence of tree canopy, leaf litter, 
and prey abundance in the forest [18] along with 
different habitat forms such as deciduous forest, 
which is important for maintaining rare species 
diversity [15].



Environmental conditions change more quickly 
with altitude than with latitude, so mountain areas 
are thought to be an ideal location for investigating 
the relationship between biodiversity patterns and 
climatic components within spatial constraints 
[19-21]. Mountains provide steep environmental 
gradients [22] that contribute to high species 
diversity and draw the attention of conservationists 
[23]. The environmental variables, evolutionary 
factors and land use patterns collectively determine 
the biodiversity of montane ecosystems [24]. 
Moreover, beetle species composition also varies 
along elevational gradients [25, 26]. Species 
richness tends to decline with increasing elevation 
[27, 28] or peaks at mid-elevation [29-31]. The 
temperature has been identified as the primary 
predictor of species richness along with a few other 
factors such as relative humidity, soil nutrients, local 
habitat features, vegetation patterns, and available 
areas, all of which influence species diversity                                                                             
[32-34]. 

Phulchowki is the highest hill located in the 
mid-mountain region of Nepal. It offers a range of 
geographical slopes that support the inhabitation of 
a wide variety of flora and fauna. Despite the study 
area being recognized as a biodiversity hotspot, the 
beetle assemblages along elevational gradients had 
yet to be investigated. To understand the overall 
biodiversity of the mountain ecosystem, a shift in 
focus on the understudied beetles' community was 
necessary.  Therefore, we carried out this study to: 
(i) assess species richness and abundance of beetles 
in the study area; (ii) compare the composition of 
beetle assemblages along elevational gradients 
of Phulchowki hill; (iii) determine the seasonal 
variation and (iv) investigate the relationships 
between the beetle community and environmental 
variables (temperature and humidity). The main 
purpose of this study was to explore the community 
structure of beetles associated with ecological and 
environmental components of the mid-hill region. 
Moreover, this research will help to conduct further 
studies and implement conservational strategies for 
the Coleopteran diversity in Nepal. 

2.   MATERIALS AND METHODS

2.1 Study Area

Phulchowki hill (Latitude: 27°35'00" N and 

Longitude: 85°24'00" E) is situated in the Lalitpur 
district of Nepal. Its elevation ranges from                              
1500 m to 2762 m. Forest is covered by shrubs, herbs 
and trees and therefore represents a diverse floral 
assemblage. The Phulchowki hill is characterized 
by three distinct evergreen broad-leaved forest 
types: mixed Schima-Castanopsis forest at the 
base (1500 m - 1800 m), Oak- Laurel forest                                                                                              
(1800 m - 2400 m) and evergreen oak forest                                  
(above 2000 m) [35]. Phulchowki is 4281 ha in 
size, one-third of which is managed as a community 
forest (1368 ha), and the rest (mainly on and around 
the summit) is a national forest [36]. The elevational 
gradients ranging from 1500 m to 2700 m were 
chosen for the study (Fig. 1). 
 
2.2  Study Design

The study area was divided into five sampling sites 
maintained at 1500 m (27°35'18" N, 85°22'47" 
E), 1800 m (27°34'53" N, 85°22'57" E), 2100 m 
(27°34'44" N, 85°23'30" E), 2400 m (27°34'38" N, 
85°23'54" E) and 2700 m (27°34'16" N, 85°24'13" 
E). A survey was conducted from June 2018 to May 
2019 that covered four different seasons (summer, 
autumn, winter, and spring). The pitfall trap method 
was used to collect beetles at each site [37]. Ten 
pitfall traps were set up in each sampling site within 
a 300 sq. m area. Each trap was spaced three meters 
apart from the others and five meters away from the 
forest fragment border. The traps were then filled 
with one-fourth of water and a few drops of ethylene 
glycol as preservatives [38]. All of the traps were 
set up from 11 am to 4 pm on the same day and 
then left for one week. These traps were kept in the 
same place during all seasons. The specimens from 
each trap were separated from debris and unwanted 
particles and preserved at 70 % ethyl alcohol. Then 
labels with site and sample numbers were marked 
on the vials. Further lab works were conducted at 
the Department of Zoology, Amrit Campus.

2.3  Identification and Categorization of  
       Specimens

The specimens were sorted into their respective 
families and assigned to morphospecies based on 
their morphological features. Different taxonomic 
keys were used for the identification of specimens 
up to the family and morphospecies levels [39-42]. 
We further compared these specimens with labeled 
beetle specimens available at Natural History 
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Museum, Swoyambhu, Kathmandu to identify 
them.

2.4  Data Analysis

Shannon-Weiner (H´) and Pielou´s evenness 
(J) were estimated for calculating the species 
diversity of the beetle in study area [43, 44]. Bray 
Curtis's analysis for hierarchical clustering using 
the single linking method was used to analyze 
the similarities among the beetle assemblages. 
Principal component analysis (PCA) was done to 
analyze the distribution patterns of beetles among 
the altitudinal gradient. The data were normalized 
before analysis. Furthermore, we evaluated 
the averages of environmental variables i.e. 
temperature and humidity from our recorded data. 
These data were measured by ourselves during the 
sampling period in the study field using a digital 
thermo-hygrometer (HTC-2). The relationship of 

temperature and humidity with the species richness 
and abundance of beetles was tested by generalized 
linear modeling (GLM) [45]. Data were analyzed 
using the vegan package [46] in R software version 
3.6.1 [47].

 3.   RESULTS

3.1  Species Richness and Abundance of Beetles

Overall 237 beetle specimens were collected during 
the survey representing 43 morphospecies under                                                                                                 
37 genera and 12 families (Scarabaeidae, 
Carabidae, Coccinellidae, Chrysomelidae, 
Silphidae, Staphylinidae, Curculionidae, 
Megalopodidae, Prionoceridae, Cantharidae, 
Cleridae, and Tenebrionidae) (Table 1). The 
Carabidae family had the most species (11) 
followed by Chrysomelidae (10), Scarabaeidae 
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Fig. 1. Map of the study area. A) Map of Nepal showing Lalitpur district; B) Elevation map of Lalitpur district showing 
sampling sites located at Phulchowki hill 
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Fig. 1. Map of the study area. A) Map of Nepal showing Lalitpur district; B) Elevation map of Lalitpur 
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(Seven), Staphylinidae (Five), and Curculionidae 
(Three). The families Coccinellidae, Tenebrionidae, 
Cleridae, Prionoceridae, Megalopodidae, 
Cantharidae and Silphidae were represented 
by single species. A considerable difference in 
beetle abundance was observed during the study 
period. We recorded the Scarabaeidae family 
(36.28 %) as the most dominant family. Overall,                                                                       
Onthophagus sp. 2 (30.80 %), Coccinella sp.               
(13.08 %), Nebria sp. (8.86 %), Otiorhynchus sp. 
(6.33 %), and Chaetocnema sp. (5.91 %) were the 
most abundant species. Onthophagus sp. 2 and 
Coccinella sp. were recorded from all sites.

3.2  Composition of Beetles along the        
       Elevational Gradients

The highest number of species (19) were collected 
at 1500 m elevation while the least number of 
species (Eight) were recorded at 2100 m elevation. 
On the other hand, the abundance of beetle was 
highest (88) at 1500 m elevation whereas the lowest 
abundance (20) was observed at 2700 m elevation 
(Fig. 2). 

The Shannon-Weiner diversity index (H´) 
revealed the highest beetle diversity (H´=2.42) 
at 1500 m elevation whereas the lowest diversity 
(H´=1.72) at 2100 m and 2700 m elevations. The 

evenness index was recorded at maximum (J=0.92) 
at 2400 m elevation (Table 2). 

PCA analysis for Coleoptera assemblages 
along the elevational gradients predicted the 
association of beetle families with particular 
elevations investigated. The first two principal 
components of the PCA biplot explained 87.9 % 
and 7.8 % of the total variation (Table 3). There 
was a strong correlation of species found at 1500 
m and 1800 m elevations. A high correlation of 
2100 m elevation was observed with 1500 m and 
1800 m elevations. Similarly, 2700 m elevation 
also had a high correlation with 1500 m and                                                                                                   
1800 m elevations. However, the beetle’s 
composition of 2400 m elevation was differentiated 
from any of other elevations (1500 m, 1800 m,                                                                                                        
2100 m, and 2700 m). There was a negative 
correlation of 2400 m and 2700 m elevations 
with principal component 1 (PC1) in which 2400 
m showed a highly negative correlation with 
PC1. On the other hand, a positive correlation of 
1500 m, 1800 m, and 2100 m was viewed with 
principal component 2 (PC2) (Fig. 3). Species of 
the Carabidae family were largely associated with                                                                                                            
1500 m, 1800 m, and 2100 m elevations. 
Furthermore, the composition of the Scarabaeidae 
family was related to 1500 m and 2700 m elevations.
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Table 2. Main attributes of beetle assemblages in Phulchowki hill 
 

Attributes 

Elevations Seasons 

1500 1800 2100 2400 2700 Summer Autumn Winter Spring 

Number of families 9 7 4 9 5 7 7 3 10 

Number of morphospecies 19 17 8 13 10 10 16 4 23 

Shannon-Wiener index (H´) 2.42 2.18 1.72 2.36 1.72 1.25 2.38 1.03 2.50 

Pielou index (J) 0.82 0.77 0.83 0.92 0.72 0.54 0.86 0.74 0.79 

 

             PCA analysis for Coleoptera assemblages 
along the elevational gradients predicted the 
association of beetle families with particular 
elevations investigated. The first two principal 
components of the PCA biplot explained 87.9 % and 
7.8% of the total variation (Table 3). There was a 
strong correlation of species found at 1500 m and 
1800 m elevations. A high correlation of 2100 m 
elevation was observed with 1500 m and 1800 m 
elevations. Similarly, 2700 m elevation also had a 
high correlation with 1500 m and 1800 m 
elevations. However, the beetle’s composition of 
2400 m elevation was differentiated from any of 

other elevations (1500 m, 1800 m, 2100 m, and 
2700 m). There was a negative correlation of 2400 
m and 2700 m elevations with principal component 
1 (PC1) in which 2400 m showed a highly negative 
correlation with PC1. On the other hand, a positive 
correlation of 1500 m, 1800 m, and 2100 m was 
viewed with principal component 2 (PC2) (Fig. 3). 
Species of the Carabidae family were largely 
associated with 1500 m, 1800 m, and 2100 m 
elevations. Furthermore, the composition of the 
Scarabaeidae family was related to 1500 m and 2700 
m elevations.  

 

Table 3. Summary of Principal Component Analysis 
Attributes PC1 PC2 PC3 PC4 PC5 

S.D. 2.0967 0.6249 0.34079 0.28529 0.12515 

Proportion of Variance 0.8793 0.0781 0.02323 0.01628 0.00313 

Cumulative proportion 0.8793 0.9574 0.98059 0.99687 1 
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                     Fig. 3. Biplot of PCA for assemblages of Coleoptera families in five elevations 

 

3.3 Seasonal Variation of Coleoptera  

Species richness was found to be the highest (23) in 
the spring season while the lowest number of 
species (four) were captured during the winter 
season. However, coleopteran abundance was 
highest (78) in the rainy summer season and least 
(20) in the dry winter season (Fig. 4). Furthermore, 

the Shannon-Weiner diversity index (H´) revealed 
that the beetle diversity peaked during the spring 
season (H´=2.5) while bottomed during the winter 
season (H´=1.03). In contrast to this, the Pielou´s 
evenness was more or less similar in winter and 
spring but was found to be maximum in autumn 
(J=0.86) (Table 2).  
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as summer, autumn, winter, and spring. A similar 
beetle composition was observed between the 
autumn, summer, and spring seasons. However, the 
beetle composition in the winter season was least 
similar to other seasons during the study (Fig. 5).

 3.4  Relationships between Beetle Community  
       and Environmental Variables
 
Environmental factors such as temperature and 
humidity were used as significant predictor 
variables (independent variable) whereas beetle 
abundance and species richness were used as 
the response variables in the General linear 
modeling (GLM). According to the results of 
analysis done using General linear modeling 
(GLM) with Poisson regression, there was an 
association between temperature and humidity 
with the beetle community throughout our study 
period in Phulchowki hill. It revealed that beetle 
abundance was significantly influenced by both 
temperature (z = 8.211, p < 2e-16) and humidity                                                                                     
(z = 3.827, p = 0.00013) (Table 4). However, the 
species richness of beetle was significant with only 
temperature (z = 2.263, p = 0.0236). There was no 
significant impact on the species richness of beetles 
by humidity (z = 1.707, p = 0.0879) (Table 5). 
Overall, this finding indicated that the temperature 
[abundance (p < 2e-16) and species richness                   
(p = 0.0236)] was the best predictor variable than 
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Fig. 4. Species richness and abundance of beetles in four seasons. Seasons symbols:- SU: 
Summer, AU: Autumn, WI: Winter, SP: Spring 

The hierarchical clustering dendrogram by 
cluster analysis depicted similarities in beetle 
composition between four different seasons such as 
summer, autumn, winter, and spring. A similar 

beetle composition was observed between the 
autumn, summer, and spring seasons. However, the 
beetle composition in the winter season was least 
similar to other seasons during the study (Fig. 5). 

 

 
  
 

Fig 5. Cluster Dendrogram by Bray Curtis Analysis (single linkage) for beetle assemblages of 
seasons studied. Season symbols: SU-Summer, AU-Autumn, WI-Winter, SP-Spring 
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humidity [abundance (p = 0.00013) and species 
richness (p = 0.0879)] as it greatly affected presence 
of beetle species along with their abundance and 
hereby shaped the patterns of beetle community in 
Phulchowki hill. 

4.   DISCUSSION 

4.1 Species Richness, Abundance and Diversity  
      of Coleoptera along Elevational Gradients
 
Family Scarabaeidae was most abundant in our study. 
Satheesha et al. [48] also reported Scarabaeidae to 

be the predominant family in their research from 
different habitat sites of Davangere University 
Campus, Karnataka, India. The occurrence of 
dung-producing mammals in forests could be the 
reason for the higher abundance of dung beetles 
[49]. Abundance and species richness, as well as 
beetle diversity, was observed maximum at the 
lowest elevation. Musthafa et al. [50] recorded the 
peak diversity at lower elevations. Species richness 
is considered an indispensable factor to estimate 
the biodiversity of an ecosystem. A greater number 
of species were associated with lower elevations 
than upper elevations. A similar species diversity 
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3.4 Relationships between Beetle Community and 
Environmental Variables  

Environmental factors such as temperature and 
humidity were used as significant predictor variables 
(independent variable) whereas beetle abundance 
and species richness were used as the response 
variables in the General linear modeling (GLM). 
According to the results of analysis done using 
General linear modeling (GLM) with Poisson 
regression, there was an association between 
temperature and humidity with the beetle 
community throughout our study period in 
Phulchowki hill. It revealed that beetle abundance 

was significantly influenced by both temperature (z 
= 8.211, p < 2e-16) and humidity (z = 3.827, p = 
0.00013) (Table 4). However, the species richness of 
beetle was significant with only temperature (z = 
2.263, p = 0.0236). There was no significant impact 
on the species richness of beetles by humidity (z = 
1.707, p = 0.0879) (Table 5). Overall, this finding 
indicated that the temperature [abundance (p < 2e-
16) and species richness (p = 0.0236)] was the best 
predictor variable than humidity [abundance (p = 
0.00013) and species richness (p = 0.0879)] as it 
greatly affected presence of beetle species along 
with their abundance and hereby shaped the patterns 
of beetle community in Phulchowki hill.  

Table 4. Relation of beetle abundance with environmental factors (Generalized linear modeling with Poisson 
regression using log link function) 

Factors Estimate Std. Error z value p-value 

Temperature 0.28590 0.03482 8.211 < 2e-16 

Humidity 0.05644 0.01475 3.827 0.00013 

 

Table 5. Relation of species richness with environmental factors (Generalized linear modeling with Poisson 
regression using log link function) 

Factors Estimate Std. Error z value p-value 

Temperature 0.13008 0.05748 2.263 0.0236 

Humidity 0.04381 0.02567 1.707 0.0879 

 

 

4. DISCUSSIONS  

4.1 Species Richness, Abundance and Diversity of 
Coleoptera along Elevational Gradients 

Family Scarabaeidae was most abundant in our 
study. Satheesha et al. [48] also reported 
Scarabaeidae to be the predominant family in their 
research from different habitat sites of Davangere 
University Campus, Karnataka, India. The 
occurrence of dung-producing mammals in forests 
could be the reason for the higher abundance of 
dung beetles [49]. Abundance and species richness, 
as well as beetle diversity, was observed maximum 
at the lowest elevation. Musthafa et al. [50] recorded 

the peak diversity at lower elevations. Species 
richness is considered an indispensable factor to 
estimate the biodiversity of an ecosystem. A greater 
number of species were associated with lower 
elevations than upper elevations. A similar species 
diversity pattern along increasing elevations at 
Genting Highland, Malaysia has been documented 
by Musthafa and Abdullah [8]. Likewise, Gebert et 
al [51] observed abundance to reach a peak at 
around 1500 m when abundances of beetle species 
were investigated from 870 m to 4500 m elevation. 
In addition, variables such as habitat, food 
availability, vegetation structure and leaf litter are 
responsible for the diversity and abundance of 
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predictor variable than humidity [abundance (p = 
0.00013) and species richness (p = 0.0879)] as it 
greatly affected presence of beetle species along 
with their abundance and hereby shaped the patterns 
of beetle community in Phulchowki hill.  

Table 4. Relation of beetle abundance with environmental factors (Generalized linear modeling with Poisson 
regression using log link function) 

Factors Estimate Std. Error z value p-value 

Temperature 0.28590 0.03482 8.211 < 2e-16 

Humidity 0.05644 0.01475 3.827 0.00013 

 

Table 5. Relation of species richness with environmental factors (Generalized linear modeling with Poisson 
regression using log link function) 

Factors Estimate Std. Error z value p-value 

Temperature 0.13008 0.05748 2.263 0.0236 

Humidity 0.04381 0.02567 1.707 0.0879 

 

 

4. DISCUSSIONS  

4.1 Species Richness, Abundance and Diversity of 
Coleoptera along Elevational Gradients 

Family Scarabaeidae was most abundant in our 
study. Satheesha et al. [48] also reported 
Scarabaeidae to be the predominant family in their 
research from different habitat sites of Davangere 
University Campus, Karnataka, India. The 
occurrence of dung-producing mammals in forests 
could be the reason for the higher abundance of 
dung beetles [49]. Abundance and species richness, 
as well as beetle diversity, was observed maximum 
at the lowest elevation. Musthafa et al. [50] recorded 

the peak diversity at lower elevations. Species 
richness is considered an indispensable factor to 
estimate the biodiversity of an ecosystem. A greater 
number of species were associated with lower 
elevations than upper elevations. A similar species 
diversity pattern along increasing elevations at 
Genting Highland, Malaysia has been documented 
by Musthafa and Abdullah [8]. Likewise, Gebert et 
al [51] observed abundance to reach a peak at 
around 1500 m when abundances of beetle species 
were investigated from 870 m to 4500 m elevation. 
In addition, variables such as habitat, food 
availability, vegetation structure and leaf litter are 
responsible for the diversity and abundance of 

pattern along increasing elevations at Genting 
Highland, Malaysia has been documented by 
Musthafa and Abdullah [8]. Likewise, Gebert et al 
[51] observed abundance to reach a peak at around 
1500 m when abundances of beetle species were 
investigated from 870 m to 4500 m elevation. In 
addition, variables such as habitat, food availability, 
vegetation structure and leaf litter are responsible 
for the diversity and abundance of terrestrial insects 
[52-54]. Therefore, the availability of more food 
resources and mixed vegetation at lower elevations 
could be the reason for the maximum abundance of 
beetles. 

The Carabidae family was predominantly 
associated with lower elevations such as 1500 m, 
1800 m, and 2100 m. These elevations provided 
different geographical gradients and microhabitats 
such as caves, endogean, ant nests, termite tubes, 
leaf litter, tree bark, under logs, rocks, edge of 
small water bodies, small grassland areas, etc. 
Ground beetles displayed strong mobility between 
various ecosystems [55, 56] and their population 
and species diversity were positively correlated 
with habitat diversity [57-60]. Most species of 
Scarabaeidae were recorded from 1500 m and 
2700 m elevations. Anthropogenic activities such 
as manufacturing industries, educational institutes, 
Godawari buspark, and construction projects around 
1500 m elevation and the presence of military 
camps, temples and tourism-related activities 
at the top of the hill could be responsible for the 
existence of many dung beetle species. Musthafa 
and Abdullah [61] recorded maximum dung beetles 
in the same way from the high human-influenced 
area in a recent study. Dung beetle populations are 
used to determine the land use pattern and effects 
on biodiversity by human interactions [62]. 

4.2  Seasonal Variation of Coleoptera 

Grouping of pairs by cluster analysis of seasons 
showed identical beetle assemblages in the summer, 
autumn, and spring season. However, beetle 
composition in winter was least similar to other 
seasons. The presence of favorable vegetation like 
tree canopies, suitable temperature, and excessive 
foraging materials contributed to the highest 
collection of beetle species during the spring season. 
The outcome of our study was closely related to 
Silva et al. [63], which also recorded the highest 

number of beetle species during the spring season 
in the forest fragments of Brazil. Furthermore, our 
study demonstrated the highest abundance of beetle 
in the summer season. We observed this result due 
to heavy rainfall and warm temperature during the 
summer season. The least abundance was reported 
in the winter season. Moreover, the dung beetle's 
composition was affected by the seasons as well 
and thus, does not occur uniformly throughout 
the year. The result was firmly associated with the 
finding of Jain and Mittal [49], which documented 
the highest abundance of dung beetles during wet 
summer in the forests of Haryana (India). Similarly, 
Wardhaugh et al. [64] reported the highest 
abundance of beetle during the wet summer season 
and the lowest during the dry winter season. Arya 
et al. [65] also recorded the most number of beetle 
individuals in the rainy season along the altitudinal 
gradient of Binsar Wildlife Sanctuary, Almora, 
Uttarakhand, India. 

4.3  Relationships between Beetles         
       Community and Environmental Variables

General linear model (GLM) results indicated that 
both beetle abundance and species richness were 
affected by temperature. This was further concluded 
by Moraes et al. [53] in their study of Carabid beetles 
in humid forests of southern Brazil. Contrary to this, 
the humidity only had a significant impact on the 
abundance of the beetle. However, no major effect 
was obtained on species richness due to humidity. 
The number of species presence greatly influenced 
the overall beetle diversity. The maximum species 
richness and beetle diversity were observed in the 
spring season when the temperature was highest. 
During cold winter, number of species and diversity 
were lowest. A study conducted by Nunes et al. [22] 
on dung beetles revealed the decline of dung beetle 
richness on decreasing temperature. As a whole, 
the temperature was the best predictor variable than 
humidity as it often determined the beetle community 
in Phulchowki hill. Wardhaugh et al. [64] also 
highlighted temperature as a major environmental 
variable to explain the total abundance and species 
diversity patterns. Likewise, Oliveira et al. [66] 
addressed the strong and significant correlations 
between Coleoptera abundance and temperature. 
Nevertheless, temperature and humidity were 
accountable for the beetle abundance and their 
activities [67]. This result was in accordance with 
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the studies of seasonal variation of arthropods in 
the tropical region [68, 69]. Furthermore, Louzade 
and Lopes [70] reported the highest number of 
Scarabaeinae species during the hot summer season 
in the forests of Brazil. The study on the diversity 
and seasonal abundance of Scarabaeoid dung beetle 
in Central New Jersey showed a significant effect 
of temperature on the abundance of dung beetle 
captured each month in farm sites [71]. Similarly, 
Hernández and Vaz-de-Mello [72] found a positive 
correlation and a linear relationship between the 
species richness of beetles and the mean monthly 
temperature in the forest (p < 0.01).

There were a few potential limitations in our 
study. Some of them are mentioned as follows: (i) 
taxonomy problem for species-level identification 
of beetle specimens; (ii) difficulty in field visits 
and data collection due to heavy rainfall during 
the summer season; (iii) lack of prior research on 
beetles community in hills region of Nepal and (iv) 
lack of authoritative climatic data from concerning 
department.

5.   CONCLUSION 

This study from Phulchowki hill recorded a 
total of 237 beetle individuals representing 43 
morphospecies belonging to 37 genera and 12 
families. Beetle assemblages were more diverse at 
lower altitudes. The highly abundant Scarabaeidae 
in human-influenced areas such as 1500 m and                                                                                                   
2700 m indicated the growing anthropogenic 
pressure in the hill region. The Carabidae was 
the most diverse family which were largely 
associated with 1500 m, 1800 m, and 2100 m 
altitudes. Overall, there was a high correlation of 
species composition between 1500 m and 1800 m 
elevations. Seasonally, the diversity peaked during 
the warm spring season and down during the cold 
winter season. Furthermore, the composition of 
beetles in the autumn and summer seasons was 
similar. Our results indicated that temperature had a 
strong influence on the composition of Coleoptera 
assemblage. This study in Phulchowki hill can be 
used to evaluate the elevational beetle diversity 
pattern in the mountain region in Nepal. It could 
further set the standards for the research community 
to carry out conservation efforts.

6.   RECOMMENDATIONS 

More information on beetle composition might be 
crucial as their species distribution patterns can be 
applied as a bioindicator. It can effectively determine 
the human impact on the mountain ecosystem and 
thereby help us to execute biodiversity conservation 
strategies in Nepal. Therefore, extensive research in 
a wide range of elevations in the mountain region 
is necessary for a better understanding of overall 
biodiversity. 
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