A Study on CIGS Thin-Film Solar Cells Through SCAPS-1D Simulations
DOI:
https://doi.org/10.53560/PPASA(62-1)869Keywords:
SCAPS 1D, Thin Films, Solar Cell, CIGS, SimulationsAbstract
This research utilized SCAPS-1D simulation software to model a high-efficiency CIGS-based solar cell with configuration Ag/ZnO:Al/i-ZnO/CdS/CIGS/Mo. Various optimizations were performed, focusing on the absorber layer’s thickness, acceptor density, and defect density to enhance the cell’s performance. Furthermore, the work function values of rear contact metals were analyzed to understand their influence on critical photovoltaic parameters like open-circuit voltage (Voc), short-circuit current (Jsc), fill factor (FF), and power conversion efficiency (PCE). The impact of temperature was also analyzed, emphasizing the necessity of effective thermal management techniques to promise consistent and effective performance under varying environmental conditions. The study further emphasized the importance of the hole transport layer (HTL) in improving charge carrier collection and reducing recombination losses. Efforts to develop cadmium-free designs reinforced the push towards sustainable and eco-friendly photovoltaic technologies. The optimal parameters achieved in this study included an absorber layer thickness of 0.4 µm, acceptor density of absorber at 1×1018 cm−3, defect density of 1×1015 cm−3, and a back contact selenium work function of 5.9 eV. Under AM 1.5 G spectrum illumination at 300 K, the optimized cell demonstrated exceptional performance, with a Voc of 0.7338 V, Jsc of 36.352805 mA/cm2, FF of 83.33%, and PCE of 22.23%. The results were benchmarked against existing literature, showcasing significant improvements in device efficiency. This study provides a comprehensive framework for optimizing CIGS-based solar cells and highlights their potential for delivering high-performance, sustainable solar energy.
References
F. Qin, Y. Zhang, K. Naseem, Z. Chen, G. Suo, W. Hayat, and S. H. S. Gardezi. Assessment of the importance and catalytic role of chromium oxide and chromium carbide for hydrogen generation via hydrolysis of magnesium. Nanoscale 16(41): 19518-19528 (2024).
F. Qin, K. Naseem, Z. Chen, G. Suo, and A. Tahir. Carbon nano-tube coated with iron carbide catalysis for hydrolysis of magnesium to generate hydrogen. International Journal of Hydrogen Energy 83: 1359-1369 (2024).
K. Naseem, H. Zhong, W. Jiang, M. Liu, C. Lang, K. Chen, L. Ouyang, and J. Huang. A reusable dual functional Mo₂C catalyst for rapid hydrogen evolution by Mg hydrolysis. Journal of Materials Chemistry A 11(36): 19328-19337 (2023).
E. Kabir, P. Kumar, S. Kumar, A.A. Adelodun, and K.-H. Kim. Solar energy: Potential and future prospects. Renewable and Sustainable. Energy Reviews 82: 894-900 (2018).
S. Moujoud, B. Hartiti, S. Touhtouh, F. Belhora, and A. Hajjaji. Optimizing Sb2Se3 thin-film solar cells: A comprehensive simulation study of multiple influential factors. Optik 303: 171723 (2024).
O.J. Olujobi, U.E. Okorie, E.S. Olarinde, and A.D. Aina-Pelemo. Legal responses to energy security and sustainability in Nigeria's power sector amidst fossil fuel disruptions and low carbon energy transition. Heliyon 9: e17912 (2023).
A.A. Hussien, A.A. Salem, S.W. Sharshir, and T. Nabil. Performance Assessment of an Automated Hybrid Solar Desalination System Powered by Solar PV and Wind Turbine: Experimental Investigation. SSRN 4766771. (2024). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4766771
Y. Kim, M. Shin, M. Lee, and Y. Kang. Hot-spot generation model using electrical and thermal equivalent circuits for a copper indium gallium selenide photovoltaic module. Solar Energy 216: 377-385 (2021).
S.R. Fatemi Shariat Panahi, A. Abbasi, V. Ghods, and M. Amirahmadi. Analysis and improvement of CIGS solar cell efficiency using multiple absorber substances simultaneously. Journal of Materials Science: Materials in Electronics 31: 11527-11537 (2020).
L. Lin and N.M. Ravindra. CIGS and perovskite solar cells–an overview. Emerging Materials Research 9: 812-824 (2020).
H. I. Abdalmageed, M. Fedawy, and M. H. Aly. Effect of absorber layer bandgap of CIGS-based solar cell with (CdS/ZnS) buffer layer. Journal of Physics: Conference Series 2128: 012009 (2021).
M. Islam, T. Ahmed, S.U.D. Shamim, A.A. Piya, and A. Basak. Thickness dependent numerical investigations of lead-free perovskite/CIGS bilayer solar cell using SCAPS-1D. Chemistry of Inorganic Materials 2: 100034 (2024).
A.N. Das, P.K. Paul, M.H. Jewel, A.A. Mamun, K.H. Akhand, and S.A. Chowdhury. Analytical Modeling and Performance analysis of Copper-Indium-Gallium-Di Selenide-Based (CIGS) Solar Cell by SCAPS-1D. 7th International Conference on Development in Renewable Energy Technology (ICDRET) pp. 1-6 (2024).
B.F. Gonçalves, S. Sadewasser, L.M. Salonen, S. Lanceros-Méndez, and Y.V. Kolen'ko. Merging solution processing and printing for sustainable fabrication of Cu (In, Ga) Se2 photovoltaics. Chemical Engineering Journal 442: 136188 (2022).
M. Burgelman, K. Decock, S. Khelifi, and A. Abass. Advanced electrical simulation of thin film solar cells. Thin Solid Films 535: 296-301 (2013).
M.F. Hossain, A. Ghosh, M.A.A. Mamun, A.A. Miazee, H. Al-lohedan, R.J. Ramalingam, M.F. Islam Buian, S.R.I. Karim, M.Y. Ali, and M. Sundararajan. Design and simulation numerically with performance enhancement of extremely efficient Sb2Se3-Based solar cell with V2O5 as the hole transport layer, using SCAPS-1D simulation program. Optics Communications 559: 130410 (2024).
E. Danladi, P.M. Gyuk, N.N. Tasie, A.C. Egbugha, D. Behera, I. Hossain, I.M. Bagudo, M.L. Madugu, and J.T. Ikyumbur. Impact of hole transport material on perovskite solar cells with different metal electrode: a SCAPS-1D simulation insight. Heliyon 9: e14326 (2023).
M. Zakir Muzakkar, N.A. Busri, A.A. Umar, L.O.A. Salim, Maulidiyah, and M. Nurdin. Enhanced Performance of Perovskite Solar Cells with Tungsten-Doped SnO₂ as an Electron Transport Material. Journal of Inorganic and Organometallic Polymers and Materials 1-9 (2024).
A.R. Smith, M. Ghamari, S. Velusamy, and S. Sundaram. Thin-Film Technologies for Sustainable Building-Integrated Photovoltaics. Energies 17(24): 6363 (2024).
C.J. Petti, M.M. Hilali, and G. Prabhu. Thin Films in Photovoltaics. In: Handbook of Thin Film Deposition: Techniques, Processes, and Technologies. K. Seshan (Ed.). Elsevier pp. 313-359 (2012).
A. ul Rehman, T. Munir, S. Afzal, M. Saleem, and I.L. Ikhioya. Enhanced Solar Cell Efficiency with Tin-Based Lead-Free Material (FASnI3) through SCAPS-1D Modeling. Eurasian Journal of Science and Technology 4: 258-263 (2024).
N. Khoshsirat, N.A.M Yunus, M.N. Hamidon, S. Shafie, and N. Amin. Analysis of absorber and buffer layer band gap grading on CIGS thin film solar cell performance using SCAPS. Pertanika Journal of Science and Technology 23(2): 241-250 (2015).
M.K. Hossain, M.K.A. Mohammed, R. Pandey, A.A. Arnab, M.H.K. Rubel, K.M. Hossain, M.H. Ali, M.F. Rahman, H. Bencherif, J.V. Madan, M.R. Islam, D.P. Samajdar, and S. Bhattarai. Numerical analysis in DFT and SCAPS-1D on the influence of different charge transport layers of CsPbBr3 perovskite solar cells. Energy & Fuels 37: 6078–6098 (2023).
A.K. Chaudhary, S. Verma, and R.K. Chauhan. Thermal and power performance optimization of cost-effective solar cells using eco-friendly perovskite materials. Physica Scripta 99: 025512 (2024).
Z. Qiu, Y. Li, X. Long, H. Tian, Y. Pu, B. Lv, J. Wei, Q. Dai, and W. Wang. Built-in electric field induced efficient interfacial charge separation via the intimate interface of CdS-based all-sulfide binary heterojunction for enhanced photoelectrochemical performance. Journal of Alloys and Compounds 976: 173188 (2024).
M.F. Rahman, M. Chowdhury, L. Marasamy, M.K.A. Mohammed, M.D. Haque, S.R.A. Ahmed, A. Irfan, A.R. Chaudhry, and S. Goumri-Said. Improving the Efficiency of a CIGS Solar Cell to Above 31% with Sb₂S₃ as a New BSF: A Numerical Simulation Approach by SCAPS-1D. RSC Advances 14(3): 1924-1938 (2024).
S.H. Zyoud, A.H. Zyoud, N.M. Ahmed, and A.F.I. Abdelkader. Numerical modelling analysis for carrier concentration level optimization of CdTe heterojunction thin film–based solar cell with different non–toxic metal chalcogenide buffer layers replacements: using SCAPS–1D software. Crystals 11: 1454 (2021).
T.D. Lee, and A.U. Ebong. A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews 70: 1286–1297 (2017).
F. Elhady, T.M. Abdolkader, and M. Fedawy. Simulation of new thin film Zn (O, S)/CIGS solar cell with bandgap grading. Engineering Research Express 5: 025027 (2023).
M.K. Hossain, G.F.I. Toki, I. Alam, R. Pandey, D.P. Samajdar, M.F. Rahman, M.R. Islam, M.H.K. Rubel, H. Bencherif, J. Madan, and M.K.A. Mohammad Numerical simulation and optimization of a CsPbI3-based perovskite solar cell to enhance the power conversion efficiency. New Journal of Chemistry 47: 4801-4817 (2023).
A.K. Ogundele, and G.T. Mola. Semiconductor quantum dots as a mechanism to enhance charge transfer processes in polymer solar cells. Chemosphere 345: 140453 (2023).
I. Chabri, Y. Benhouria, A. Oubelkacem, A. Kaiba, I. Essaoudi, and A. Ainane. SCAPS device simulation study of formamidinium Tin-Based perovskite solar cells: Investigating the influence of absorber parameters and transport layers on device performance. Solar Energy 262: 111846 (2023).
N.A.Z. Abidin, F. Arith, N.S. Noorasid, H. Sarkawi, A.N. Mustafa, N.E. Safie, A.S. Mohd Shah, M.A. Azam, P. Chelvanathan, and N. Amin. Dopant engineering for ZnO electron transport layer towards efficient perovskite solar cells. RSC Advances 13: 33797-33819 (2023).
K. Liang, L. Huang, T. Wang, C. Wang, Y. Guo, Y. Yue, X. Liu, J. Zhang, Z. Hu, and Y. Zhu. Rational design of formamidine tin-based perovskite solar cell with 30% potential efficiency via 1-D device simulation. Physical Chemistry Chemical Physics 25: 9413-9427 (2023).
K.D. Jayan. Design and Comparative Performance Analysis of High‐Efficiency Lead‐Based and Lead‐Free Perovskite Solar Cells. Physica Status Solidi (a) 219: 2100606 (2022).
Y. Ming, H. Wang, W. Cai, and Z. Zang. Mixed-Halide Inorganic Perovskite Solar Cells: Opportunities and Challenges. Advanced Optical Materials 11: 2301052 (2023).
M. Jihyun, Y. Choi, D. Kim, and T. Park. Beyond Imperfections: Exploring Defects for Breakthroughs in Perovskite Solar Cell Research. Advanced Energy Materials 14: 2302659 (2024).
A. ul Rehman, S. Afzal, I. Naeem, D. Bibi, S.G. Sarwar, F. Nabeel, and R.M. Obodo. Performance Optimization of FASnI₃ Based Perovskite Solar Cell Through SCAPS-1D Simulation. Hybrid Advances 7: 100301 (2024).
L.C. Ghosekar, and G.C. Patil. Performance analysis and thermal reliability study of multilayer organic solar cells. IEEE Transactions on Device and Materials Reliability 19: 572-580 (2019).
S. Priyanka, and N.M. Ravindra. Temperature dependence of solar cell performance—an analysis. Solar Energy Materials and Solar Cells 101: 36-45 (2012).
R.L Milot, G.E. Eperon, H.J. Snaith, M.B. Johnston, and L.M. Herz. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Advanced Functional Materials 25: 6218-6227 (2015).
J.K. Deepthi, and V. Sebastian. Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Solar Energy 217: 40-48 (2021).
A. ul Rehman, M. Iqbal, D. Bibi, F. Muneer, S. Afzal, T. Munir, and M. Bilal. Optimization of Lead-Free Inorganic Perovskite Solar Cells: SCAPS Numerical Simulation Study on (FA)₂BiCuI₆ Absorber Layer. Eurasian Journal of Science and Technology 4(4): 340-354 (2024).
D. Wang, J. Sheng, S. Wu, J. Zhu, S. Chen, P. Gao, and J. Ye. Tuning back contact property via artificial interface dipoles in Si/organic hybrid solar cells. Applied Physics Letters 109(4): 043901 (2016).
M. Bivour, J. Temmler, F. Zähringer, S. Glunz, and M. Hermle. High work function metal oxides for the hole contact of silicon solar cells. IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA pp. 0215-0220 (2016).
T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, A. Acquaye, G. Schileo, K.B. Mustapha, and R. Greenough. Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews 80: 1321-1344 (2017).
K. Vijayan, S.P. Vijayachamundeeswari, K. Sivaperuman, N. Ahsan, T. Logu, and Y. Okada. A review on advancements, challenges, and prospective of copper and non-copper based thin-film solar cells using facile spray pyrolysis technique. Solar Energy 234: 81-102 (2022).
F.S. Ahmadpanah, A.A. Orouji, and I. Gharibshahian. Improving the efficiency of CIGS solar cells using an optimized p-type CZTSSe electron reflector layer. Journal of Materials Science: Materials in Electronics 32(17): 22535-22547 (2021).
I. Gharibshahian, A.A. Orouji, and S. Sharbati. Effectiveness of band discontinuities between CIGS absorber and copper-based hole transport layer in limiting recombination at the back contact. Materials Today Communications 33: 104220 (2022).
P. Chelvanathan, M.I. Hossain, and N. Amin. Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Current Applied Physics 10(3): S387-S391 (2010).
M. Islam, T. Ahmed, S.U.D. Shamim, A.A. Piya, and A. Basak. Thickness dependent numerical investigations of lead-free perovskite/CIGS bilayer solar cell using SCAPS-1D. Chemistry of Inorganic Materials 2: 100034 (2024).

