Role of DNA Methylation and Epialleles in Eukaryotes

DNA Methylation & Epialleles

Authors

  • Linta Jadoon Department of Biosciences, University of Wah, Quaid Avenue, Wah Cantt- 47040, Pakistan
  • Shumaila Naz Department of Biosciences, University of Wah, Quaid Avenue, Wah Cantt- 47040, Pakistan
  • Madiha Rashid Department of Biosciences, University of Wah, Quaid Avenue, Wah Cantt- 47040, Pakistan
  • Nadia Zeeshan Department of Biochemistry and Biotechnology, Hafiz Hayat Campus, University of Gujrat, Pakistan
  • Kainnat Khalid Department of Biosciences, University of Wah, Quaid Avenue, Wah Cantt- 47040, Pakistan
  • Sania Rauf Department of Biosciences, University of Wah, Quaid Avenue, Wah Cantt- 47040, Pakistan

DOI:

https://doi.org/10.53560/PPASB(58-2)637

Keywords:

Epialleles, DNA methylation, Stable Epialleles, Metastable Epialleles (MEs)

Abstract

Epialleles that emerge due to methylation variation in genetically identical individuals are gaining more interest due to their involvement in physiological and pathological processes. These are also important for transgenerational epigenetic inheritance and evolution. Both stable and metastable epialleles have their importance because of their contribution to the alteration of gene expression that may lead to useful traits or diseases. The main aim of this work lies in a comparative study between stable and metastable epialleles and the latest advancements that are helpful for the interpretation and analysis of DNA methylation and epialleles. However, there is so much to discover and understand because of the inadequate knowledge about methylomes of species as well as the naturally occurring epialleles in the wild. We will get more opportunities to apply this knowledge if we have a complete understanding of methylomes and epialleles and their contribution towards the normal functioning of an organism.

References

S. Hattman. DNA-[adenine] methylation in lower eukaryotes. Biochemistry (Moscow). 70: 550-558 (2005).

J. F. Costello, and C. Plass. Methylation matters. Journal of Medical Genetics. 38: 285-303 (2001).

K. R. Pomraning, K.M. Smith, and M. Freitag. Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods. 47(3): 142-50 (2009).

M. Zhang, J.N. Kimatu, K. Xu, and B. Liu. DNA cytosine methylation in plant development. Journal of Genetics and Genomics. 37(1): 1-2 (2010).

S. Kalisz, and M.D. Purugganan. Epialleles via DNA methylation: consequences for plant evolution. Trends in Ecology and Evolution. 19(6): 309-14 (2004).

F. Johannes, and M. Colomé-Tatché. Quantitative epigenetics through epigenomic perturbation of isogenic lines. Genetics. 188(1): 215-27 (2011).

S. Finer, M.L Holland, L. Nanty, and V.K Rakyan. The hunt for the epiallele. Environmental and Molecular Mutagenesis. 52(1): 1-1 (2011).

F. Pontvianne, T. Blevins, C. Chandrasekhara, I. Mozgová, C. Hassel, O. M. Pontes, S. Tucker, P. Mokroš, V. Muchová, J. Fajkus, and C.S. Pikaard. Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states. Genes and Development. 27(14): 1545-50 (2013).

E.J. Finnegan. Epialleles—a source of random variation in times of stress. Current Opinion Plant Biology. 5(2): 101-6 (2002).

A. Agorio, S. Durand, E. Fiume, C. Brousse, I. Gy, M. Simon, S. Anava, O. Rechavi, O. Loudet, C. Camilleri, and N. Bouché. An Arabidopsis natural epiallele maintained by a feed-forward silencing loop between histone and DNA. PLoS Genetics. 13(1): e1006551 (2017).

H. Zhao, and T. Chan. Tet family of 5-methylcytosine dioxygenases in mammalian development. Journal of Human Genetics. 58(7): 421-427 (2013).

A. M. Watson, E. Hawkes, and P. Meyer. Transmission of epi-alleles with MET1-dependent dense methylation in Arabidopsis thaliana. PLoS One. 9(8): e105338 (2014). M.G. Lewsey, T.J. Hardcastle, C.W. Melnyk, Molnar, A. Valli, M.A. Urich, J.R. Nery, D.C. Baulcombe, and J.R. Ecker. Mobile small RNAs regulate genome-wide DNA methylation. Proceedings of the National Academy of Sciences. 113(6): E801-10 (2016).

S.K. Harten, H. Oey, L.M. Bourke, V. Bharti, L. Isbel, L. Daxinger, P. Faou, N. Robertson, J.M. Matthews, and E. Whitelaw. The recently identified modifier of murine metastable epialleles, Rearranged L-Myc Fusion, is involved in maintaining epigenetic marks at CpG island shores and enhancers. BMC Biology. 13(1): 21 (2015).

C.E. Niederhuth, and R.J. Schmitz. Putting DNA methylation in context: from genomes to gene expression in plants. Biochimica et Biophsica Acta (BBA)-Gene Regulatory Mechanisms. 1860(1): 149-56 (2017).

R.S. Bhat, J. Rockey, K. Shirasawa, I.S. Tilak, M.B. Patil, V.R. Lachagari. DNA methylation and expression analyses reveal epialleles for the foliar disease resistance genes in peanut (Arachis hypogaea L.). BMC Research Notes. 13(1): 20 (2020).

B.P. Perera, C. Faulk, L.K. Svoboda, J.M. Goodrich, D.C. Dolinoy. The role of environmental exposures and the epigenome in health and disease. Environmental and Molecular Mutagenesis. 61(1): 176-92 (2020).

Z.C. Mei, Z.J. Wei, J.H. Yu, F.D. Ji, L.N. Xie. Multi- omics association analysis revealed the role and mechanism of epialleles in environmental adaptive evolution of Arabidopsis thaliana. Yi Chuan= Hereditas. 42(3): 321-31 (2020).

M.J. Silver, N.J. Kessler, B.J. Hennig, P. Dominguez- Salas, E. Laritsky, M.S. Baker, C. Coarfa, H. Hernandez-Vargas, J.M. Castelino, M.N. Routledge, and Y.Y. Gong. Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome Biology. 16(1): 1-4 (2015).

S.R. Eichten, R.J. Schmitz, and N. Springer. Epigenetics; more than chromatin modifications and complex gene regulatory systems. Plant Physiology. 165(3): 933-947 (2014).

H.D. Morgan, H.G. Sutherland, D.I. Martin, and E. Whitelaw. Epigenetic inheritance at the agouti locus in the mouse. Nature Genetics. 23(3): 314-8 (1999).

M.W. Yaish. DNA methylation-associated epigenetic changes in stress tolerance of plants. In Molecular stress physiology of plants. Springer, India. p. 427- 440 (2013).

H.P. Kou, Y. Li, X.X. Song, X.F. Ou, S.C. Xing, J. Ma, D. Von Wettstein, and B. Liu. Heritable alteration in DNA methylation induced by nitrogen- deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). Journal of Plant Physiology. 168(14): 1685-93 (2011).

X. Ou, Y. Zhang, C. Xu, X. Lin, Q. Zang, T. Zhuang, L. Jiang, D. Von Wettstein, and B. Liu. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PloS One. 7(9): e41143 (2012).

L. He, W. Wu, G. Zinta, L. Yang, D. Wang, R. Liu, H. Zhang, Z. Zheng, H. Huang, Q. Zhang, and J.K. Zhu. A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions. Nature Communications. 9(1): 1-1 (2018).

R. Alonso, F.J. Berli, P. Piccoli, and R. Bottini. Ultraviolet-B radiation, water deficit and abscisic acid: a review of independent and interactive effects on grapevines. Theoretical and Experimental Plant Physiology. 28(1): 11-22 (2016).

W.M. Berbel-Filho, D. Rodríguez-Barreto, N. Berry, C. Garcia De Leaniz, and S. Consuegra. Contrasting DNA methylation responses of inbred fish lines to different rearing environments. Epigenetics. 14(10):939-48 (2019).

D. Pignatta, K. Novitzky, P.R. Satyaki, and M. Gehring. A variably imprinted epiallele impacts seed development. PLoS Genetics. 14(11): e1007469 (2018).

E. Niemitz. Epiallele accumulation. Nature Genetics. 43(11): 1053-1053 (2011).

G. Rangani, M. Khodakovskaya, M. Alimohammadi, U. Hoecker, and V. Srivastava. Site-specific methylation in gene coding region underlies transcriptional silencing of the Phytochrome A epiallele in Arabidopsis thaliana. Plant Molecular Biology. 79(1-2): 191-202 (2012).

P. Cubas, C. Vincent, and E. Coen. An epigenetic mutation responsible for natural variation in floral symmetry. Nature. 401(6749): 157-61 (1999).

P. Gallusci, C. Hodgman, E. Teyssier, and G.B. Seymour. DNA methylation and chromatin regulation during fleshy fruit development and ripening. Frontiers in Plant Science. 7: 807 (2016).

S. Maury, M.V. Trap‐Gentil, C. Hébrard, G. Weyens, A. Delaunay, S. Barnes S, M. Lefebvre, and C. Joseph. Genic DNA methylation changes during in vitro organogenesis: organ specificity and conservation between parental lines of epialleles. Physiologia Plantarum. 146(3): 321-35 (2012).

M.V. Greenberg, and D. Bourc’his. The diverse roles of DNA methylation in mammalian development and disease. Nature Reviews Molecular Cell Biology. 9: 1-8 (2019).

P.T James, P. Dominguez-Salas, B.J. Hennig, S.E. Moore, A.M. Prentice, and M.J. Silver. Maternal one-carbon metabolism and infant DNA methylation between contrasting seasonal environments: a case study from The Gambia. Current Developments in Nutrition. 3(1): nzy082 (2019).

N.J. Kessler, R.A. Waterland, A.M. Prentice, and M.J. Silver. Establishment of environmentally sensitive DNA methylation states in the very early human embryo. Science Advances. 4(7): eaat2624 (2018).

E.W. Tobi, J.J. Goeman, R. Monajemi, H. Gu, H. Putter, Y. Zhang, R.C. Slieker, A.P. Stok, P.E. Thijssen, F. Müller, and E.W. Van Zwet. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nature Communications. 5(1): 1-4 (2014).

S. Gonseth, G.M. Shaw, R. Roy, M.R. Segal, K. Asrani, J. Rine, J. Wiemels, and N.J. Marini. Epigenomic profiling of newborns with isolated orofacial clefts reveals widespread DNA methylation changes and implicates metastable epiallele regions in disease risk. Epigenetics. 14(2): 198-213 (2019).

M.S. Estill, J.M. Bolnick, R.A. Waterland, A.D. Bolnick, M.P. Diamond, and S.A. Krawetz. Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in bloodspots of newborn infants. Fertility and Sterility. 106(3): 629-39 (2016). A.S. Borengasser, A. Hendricks, P. Jambal, S. Gilley, Palacios, J. Kemp, J. Westcott, A. Garces, L. Figueroa, J. Friedman, and K. Jones. Differential DNA Methylation of Human Metastable Epialleles in Guatemalan Infants at Birth Due to Timing of a Maternal Lipid-Based Nutrition Supplement and Pre-Pregnancy BMI (P11-139-19). Current Developments in Nutrition. 3(Supplement_1): nzz048-P11 (2019).

J. Clark, E. Martin, C.M. Bulka, L. Smeester, H.P. Santos, T.M. O’Shea, and R.C. Fry. Associations between placental CpG methylation of metastable epialleles and childhood body mass index across ages one, two and ten in the Extremely Low Gestational Age Newborns (ELGAN) cohort. Epigenetics. 14(11): 1102-11 (2019).

P. Kühnen, D. Handke, R.A. Waterland, B.J. Hennig, M. Silver, A.J. Fulford, P. Dominguez-Salas, S.E. Moore, A.M. Prentice, J. Spranger, and A. Hinney. Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity. Cell Metabolism. 24(3): 502-9 (2016).

C. Faulk, J.H. Kim, O.S. Anderson, M.S. Nahar, T.R. Jones, M.A. Sartor, and D.C. Dolinoy. Detection of differential DNA methylation in repetitive DNA of mice and humans perinatally exposed to bisphenol A. Epigenetics. 11(7): 489-500 (2016).

M. Samblas, F.I. Milagro, and A. Martínez. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics. 14(5): 421- 44 (2019).

J.P. Calarco, F. Borges, M.T. Donoghue, F. Van Ex, P.E. Jullien, T. Lopes, R. Gardner, F. Berger,

J.A. Feijó, J.D. Becker, and R.A. Martienssen. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell. 151(1): 194-205 (2012).

R. Massicotte, E. Whitelaw, and B. Angers. DNA methylation: a source of random variation in natural populations. Epigenetics. 6(4): 421-7 (2011).

S. Kumar, R. Kumari, V. Sharma, and V. Sharma. Roles, and establishment, maintenance and erasing of the epigenetic cytosine methylation marks in plants. Journal of Genetics. 92(3): 629-66 (2013).

F. Thiebaut, A.S. Hemerly, and P.C. Ferreira. A role for epigenetic regulation in the adaptation and stress responses of non-model plants. Frontiers in Plant Science. 10: 246 (2019).

M. Catoni, J. Griffiths, C. Becker, N.R. Zabet, C.Bayon, M. Dapp, M. Lieberman-Lazarovich,

Weigel, and J. Paszkowski. DNA sequence properties that predict susceptibility to epiallelic switching. The EMBO Journal. 36(5): 617-28 (2017).Q. Gouil, and D.C. Baulcombe. Paramutation-like features of multiple natural epialleles in tomato. BMC Genomics. 19(1): 203 (2018).

T. Blevins, J. Wang, D. Pflieger, F. Pontvianne, and C.S. Pikaard. Hybrid incompatibility caused by an epiallele. Proceedings of the National Academy of Science. 114(14): 3702-7 (2017).

C. Becker, J. Hagmann, J. Müller, D. Koenig, O. Stegle, K. Borgwardt, and D. Weigel. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature. 480(7376): 245-9 (2011).

R.J. Schmitz, M.D. Schultz, M.G. Lewsey, R.C. O’Malley, M.A. Urich, Libiger O, N.J. Schork, and J.R. Ecker. Transgenerational epigenetic instability is a source of novel methylation variants. Science. 334(6054): 369-73 (2011).

B.T. Hofmeister, K. Lee, N.A. Rohr, D.W. Hall, and R.J. Schmitz. Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biology. 18(1): 1-6 (2017).

B. Liegard, A. Gravot, L. Quadrana, Y. Aigu, J. Bénéjam, C. Lariagon, J. Lemoine, V. Colot, M.J. Manzanares-Dauleux, and M. Jabault. Natural Epiallelic Variation is Associated with Quantitative Resistance to the Pathogen Plasmodiophora Brassicae. bioRxiv. 1: 776989 (2019).

L. Quadrana, J. Almeida, R. Asis, T. Duffy, P.G. Dominguez, L. Bermúdez, G. Conti, J.V. Da Silva, I.E. Peralta, V. Colot, and S. Asurmendi. Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nature Communications. 5(1): 1-1 (2014).

R. Sharma, P. Vishal, S. Kaul, and M.K. Dhar. Epiallelic changes in known stress-responsive genes under extreme drought conditions in Brassica juncea (L.) Czern. Plant Cell Reports. 36(1): 203- 17 (2017).

N. Wang, S. Ning, J. Wu, A. Tagiri, and T. Komatsuda. An epiallele at cly1 affects the expression of floret closing (cleistogamy) in barley. Genetics. 199(1): 95-104 (2015).

Q. Song, T. Zhang, D.M. Stelly, and Z.J. Chen. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biology. 18(1): 1-4 (2017).

L. Wedd, R. Kucharski, and R. Maleszka. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera. Epigenetics. 11(1): 1-0 (2016).

L. Wedd, and R. Maleszka. DNA methylation and gene regulation in honeybees: from genome- wide analyses to obligatory epialleles. In DNA Methyltransferases-Role and Function. Cham: Springer. p. 193-211 (2016).

T.M. Bertozzi, and A.C. Ferguson-Smith. Metastable epialleles and their contribution to epigenetic inheritance in mammals. In Seminars in Cell & Developmental Biology. Academic Press. 97: 93-105 (2020).

R. Druker, T.J. Bruxner, and N.J. Lehrbach NJ, Whitelaw E. Complex patterns of transcription at the insertion site of a retrotransposon in the mouse. Nucleic Acids Research. 32(19): 5800-8 (2004).

C. Faulk, A. Barks, and D.C. Dolinoy. Phylogenetic and DNA methylation analysis reveal novel regions of variable methylation in the mouse IAP class of transposons. BMC Genomics. 14(1): 48 (2013).

S. Mao, Y. Li, B. Liu, and T. Chi. Mouse Models of Epigenetic Inheritance: Classification, Mechanisms, and Experimental Strategies. In Handbook of Epigenetics. Academic Press. p. 231-243 (2017).

M. Mirouze, and J. Paszkowski. Epigenetic contribution to stress adaptation in plants. Current Opinion in Plant Biology. 14(3): 267-74 (2011).

X. Wei, X. Song, L. Wei, S. Tang, J. Sun, P. Hu P, and X. Cao. An epiallele of rice AK1 affects photosynthetic capacity. Journal of Integrative Plant Biology. 59(3): 158-63 (2017).

A. Kazachenka, T.M. Bertozzi, M.K. Sjoberg- Herrera, N. Walker, J. Gardner, R. Gunning, E. Pahita,

S. Adams, D. Adams, and A.C. Ferguson-Smith. Identification, characterization, and heritability of murine metastable epialleles: implications for non- genetic inheritance. Cell. 175(5): 1259-71 (2018).

H. Oey, L. Isbel, P. Hickey, B. Ebaid, and E. Whitelaw. Genetic and epigenetic variation among inbred mouse littermates: identification of inter- individual differentially methylated regions. Epigenetics & Chromatin. 8(1): 54 (2015).

Y. Zhang, J.M. Wendte, L. Ji, and R.J. Schmitz. Natural variation in DNA methylation homeostasis and the emergence of epialleles. Proceedings of the National Academy of Sciences. 117(9): 4874-84 (2020).

C. Gemma, S.V. Ramagopalan, T.A. Down, H. Beyan, M.I. Hawa, M.L. Holland, P.J. Hurd, G. Giovannoni, R.D. Leslie, G.C. Ebers, and V.K. Rakyan. Inactive or moderately active human promoters are enriched for inter-individual epialleles. Genome Biology. 14(5): R43 (2013).

S. Veerla, I. Panagopoulos, Y. Jin, D. Lindgren, and M. Höglund. Promoter analysis of epigenetically controlled genes in bladder cancer. Genes, Chromosomes and Cancer. 47(5): 368-78 (2008).

Y. Yang, L. Wu, X.O. Shu, Q. Cai, X. Shu, B. Li, X. Guo, F. Ye, K. Michailidou, M.K. Bolla, and Q. Wang. Genetically Predicted Levels of DNA Methylation Biomarkers and Breast Cancer Risk: Data From 228 951 Women of European Descent. JNCI: Journal of the National Cancer Institute. 112(3): 295-304 (2020).

Z. Lin, J.P. Hegarty, W. Yu, J.A. Cappel, X. Chen, P.W. Faber, Y. Wang, L.S. Portiz, J.B. Fan, and W.A. Koltun. Identification of disease-associated DNA methylation in B cells from Crohn’s disease and ulcerative colitis patients. Digestive Diseases and Sciences. 57(12): 3145-53 (2012).

A. Etcheverry, M. Aubry, M. De Tayrac, E. Vauleon, R. Boniface, F. Guenot, S. Saikali, A. Hamlat, L. Riffaud, P. Menei, and V. Quillien. DNA methylation in glioblastoma: impact on gene expression and clinical outcome. BMC Genomics. 11(1): 1-1 (2010).

J. Klughammer, B. Kiesel, T. Roetzer, N. Fortelny, A. Nemc, K.H. Nenning, J. Furtner, N.C. Sheffield,

P. Datlinger, N. Peter, and M. Nowosielski. The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space. Nature Medicine. 24(10): 1611- 24 (2018).

R.A. Harris, D. Nagy-Szakal, and R. Kellermayer. Human metastable epiallele candidates link to common disorders. Epigenetics. 8(2): 157-63 (2013).

A.R. Elhamamsy. Role of DNA methylation in imprinting disorders: an updated review. Journal of Assisted Reproduction and Genetics. 34(5): 549- 562 (2017).

H. Beyan, T.A. Down, S.V. Ramagopalan, K. Uvebrant, A. Nilsson, M.L. Holland, C. Gemma, G. Giovannoni, B.O. Boehm, G.C. Ebers, and A. Lernmark. Guthrie card methylomics identifies temporally stable epialleles that are present at birth in humans. Genome Research. 22(11): 2138-45 (2012).

C.J. Peter, L.K. Fischer, M. Kundakovic, P. Garg, M. Jakovcevski, A. Dincer A, A.C. Amaral, E.I. Ginns, M. Galdzicka, C.P. Bryce, and C. Ratner. DNA methylation signatures of early childhood malnutrition associated with impairments inattention and cognition. Biological Psychiatry. 80(10): 765-74 (2016).

S. Keller, D. Punzo, M. Cuomo, O. Affinito, L.Coretti, S. Sacchi, E. Florio, F. Lembo, M. Carella, M. Copetti, and S. Cocozza. DNA methylation landscape of the genes regulating D-serine and D-aspartate metabolism in post-mortem brain from controls and subjects with schizophrenia. Scientific Reports. 8(1): 1-4 (2018).

M. Ong-Abdullah, J.M. Ordway, N. Jiang, S.E. Ooi, S.Y. Kok, N. Sarpan N, N. Azimi, A.T. Hashim, Z. Ishak, S.K. Rosli, and F.A. Malike. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature. 525(7570): 533-7 (2015).

T. Mikeska, and J.M. Craig. DNA methylation biomarkers: cancer and beyond. Genes. 5(3):821-64 (2014).

R. Palanisamy, A.R. Connolly, and M. Trau. Epiallele quantification using molecular inversion probes. Analytical Chemistry. 83(7): 2631-7 (2011).

C.M. López, P. Morán, F. Lago, M. Espiñeira, M. Beckmann, and S. Consuegra. Detection and quantification of tissue of origin in salmon and veal products using methylation sensitive AFLPs. Food Chemistry. 131(4): 1493-8 (2012).

E.J. Wee, S. Rauf, M.J. Shiddiky, A. Dobrovic, and M. Trau. DNA ligase-based strategy for quantifying

eterogeneous DNA methylation without sequencing. Clinical Chemistry. 61(1): 163- 71 (2015).

T. Hossain, G. Mahmudunnabi, M.K. Masud, M.N. Islam, L. Ooi, K. Konstantinov, M.S. Al Hossain,

B. Martinac, G. Alici, N.T. Nguyen, and M.J. Shiddiky. Electrochemical biosensing strategies for DNA methylation analysis. Biosensors and Bioelectronics. 94: 63-73 (2017).

M. Menschikowski, C. Jandeck, M. Friedemann,

S. Richter, D. Thiem, B.S. Lange, and M. Suttorp. Identification and quantification of heterogeneously- methylated DNA fragments using epiallele-sensitive droplet digital polymerase chain reaction (EAST- ddPCR). Cancer Genomics-Proteomics. 15(4): 299- 312 (2018).

C.M. O’Keefe, D. Giammanco, S. Li, T.R. Pisanic, and T.H. Wang. Multilayer microfluidic array for highly efficient sample loading and digital melt analysis of DNA methylation. Lab on a Chip. 19(3): 444-51 (2019).

C. Moses, S.I. Hodgetts, F. Nugent, G. Ben- Ary, K.K. Park, P. Blancafort, and A.R. Harvey. Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing. Scientific Reports. 10(1): 1-6 (2020).

M. Qamar, K. Tanvir, S. Akbar, U. Ghani, H. Ali, M. Bilal, A. Rehman, Z. Arif, and S. Batool. CRISPER- RNA Guided Gene Editing and Implications in Endogenous Genes Activation. International Journal of Biochemistry and Biotechnology. 73-81 (2020).

L.A. Syding, P. Nickl, P. Kasparek, and R. Sedlacek. CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells. 9(4): 993 (2020).

C.K. Sung, and H. Yim. CRISPR-mediated promoter de/methylation technologies for gene regulation. Archives of Pharmacal Research. 28: 1-9 (2020).

J. Gallego-Bartolomé, J. Gardiner, W. Liu, A. Papikian, B. Ghoshal, H.Y. Kuo, J.M. Zhao, D.J. Segal, and S.E. Jacobsen. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proceedings of the National Academy of Sciences. 115(9): E2125-34 (2018).

M. Rigal, C. Becker, T. Pélissier, R. Pogorelcnik, J. Devos, Y. Ikeda, D. Weigel, and O. Mathieu. Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids. Proceedings of the National Academy of Sciences. 113(14): E2083-92 (2016).

A. Seguin-Orlando, C. Gamba, C. Der Sarkissian, L. Ermini, G. Louvel, E. Boulygina, A. Sokolov, A. Nedoluzhko, E.D. Lorenzen, P. Lopez, and H.G. McDonald. Pros and cons of methylation-based enrichment methods for ancient DNA. Scientific Reports. 5(1): 1-5 (2015).

Y. Ikeda, Y. Kobayashi, A. Yamaguchi, M. Abe, and T. Araki. Molecular basis of late-flowering phenotype caused by dominant epi-alleles of the FWA locus in Arabidopsis. Plant and Cell Physiology. 48(2):205-20 (2007).

W. Goettel, and J. Messing. Epiallele biogenesis in maize. Gene. 516(1): 8-23 (2013).

W. Goettel, and J. Messing. Paramutagenicity of a p1 epiallele in maize. Theoretical and Applied Genetics. 126(1): 159-77 (2013).

V.K. Rakyan, S. Chong, M.E. Champ, P.C. Cuthbert, H.D. Morgan, K.V. Luu, and E. Whitelaw. Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission. Proceedings of the National Academy of Sciences. 100(5): 2538-43 (2003).

Downloads

Published

2021-06-03

How to Cite

Jadoon, L. ., Naz, S. ., Rashid, M. ., Zeeshan, N. ., Khalid, K. ., & Rauf, S. . (2021). Role of DNA Methylation and Epialleles in Eukaryotes: DNA Methylation & Epialleles. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 58(2), 1–16. https://doi.org/10.53560/PPASB(58-2)637

Issue

Section

Research Articles