Effect of Molarity on the Structure, Optical Properties, and Surface Morphology of (002)-Oriented Ni2O3 Thin Films Deposited via Spray Pyrolysis

Effect of Molarity on the Properties of Ni2O3 Thin Films

Authors

  • Muzamil Aftab Centre for Advanced Studies in Physics, GC University Lahore-54000, Pakistan
  • Muhammad Zakria Butt Centre for Advanced Studies in Physics, GC University Lahore-54000, Pakistan
  • Dilawar Ali Department of Physics, GC University Lahore-54000, Pakistan
  • Muhammad Usman Tanveer Centre for Advanced Studies in Physics, GC University Lahore-54000, Pakistan
  • Ali Hussnain Department of Physics, GC University Lahore-54000, Pakistan , Department of Physics, Minhaj University, Township Campus, Lahore-54770, Pakistan

Keywords:

Spray pyrolysis, Ni2O3 thin films, X-ray Diffraction, Surface morphology, Optical properties

Abstract

Ni2O3 thin films with seven molar concentrations in the range 0.01 – 0.5 M were deposited on pre-heated glass substrates employing spray pyrolysis technique. Structure of the films was (002) oriented hexagonal. The peak intensity and crystallite size increased exponentially with the increase in molarity. Both uniform and non-uniform lattice strains as well as stacking fault probability decreased linearly on increasing molarity. Average values of optical absorbance (0.554 – 0.762), extinction coefficient (0.285 – 0.391), and optical conductivity (2.43 – 3.02) in the visible region (λ = 380 – 740 nm) increased rapidly with molarity in the low molarity range 0.01 – 0.05M and rather slowly in the high molarity range (0.1 – 0.5 M). Both direct (3.99 – 4.045 eV) and indirect (3.37 – 3.52 eV) band gaps decreased whereas Urbach energy (0.33 – 0.42 eV) increased on increasing molarity. Optical reflectance of the films (λ = 270 – 900 nm) was less than 10%. Average reflectance (4.677 – 5.774 %) in the visible region (λ = 380 – 740 nm)
decreased linearly on increasing molarity. The average refractive index (1.33 – 1.53) in the visible region decreased linearly with increase in molarity. Surface morphology of the films consisted of random shape nanoparticles. Average surface roughness of the films (0.173 – 0.366 μm) increased rapidly with molarity in the range 0.01 – 0.03 M, and then decreased to an intermediate level (0.284 μm) around which it undulated in the range 0.05 – 0.5 M. Surface roughness of the films strongly exerted its influence on the absorbance, extinction coefficient, and optical conductivity of the films.

References

D. S. Ginley, and C. Bright. Transparent Conducting Oxides. MRS Bulletin 25: 15 – 18 (2000).

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks. Basic materials physics of transparent conducting oxides. Dalton Transactions 19: 2995 – 3002 (2004).

T. J. Coutts, D. L. Young, and X. Li. Characterization of transparent conducting oxides. MRS Bulletin 25: 58 – 65 (2000).

K. H. L. Zhang, K. Xi, M. G. Blamire, and R. G. Egdell. P-type transparent conducting oxides. Journal of Physics: Condensed Matter 28: 383002(2016).

M. Aftab, M. Z. Butt, D. Ali, F. Bashir, and Z. H. Aftab. Impact of copper doping in NiO thin films on their structure, morphology, and antibacterial activity against Escherichia coli. Ceramics International 46: 5037 – 5049 (2020).

J-M. Choi, and S. Im. Ultraviolet enhanced Siphotodetector using p-NiO films. Applied Surface Science 244: 435 – 438 (2005).

G. Bodurov, P. Stefchev, T. Ivanova, and K. Gesheva. Investigation of electrodeposited NiO films as electrochromic material for counter electrodes in “Smart Windows”. Materials Letters 117: 270 – 272 (2014).

H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H. Hosono. UV-detector based on pnheterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO. Thin Solid Films 445: 317 – 321 (2003).

Y-M. Lee, C-H. Hsu, and H-W. Chen. Structural, optical, and electrical properties of p-type NiO films and composite TiO2/NiO electrodes for solid-state dye-sensitized solar cells. Applied Surface Science 255: 4658 – 4663 (2009).

J. Wang, P. Yang, X. Wei, and Z. Zhou. Preparation of NiO two-dimensional grainy films and their highperformance

gas sensors for ammonia detection. Nanoscale Research Letters 10: 119 (2015).

X. Wen, X. Chen, N. Tian, J. Gong, J. Liu, M.H. Rümmeli, P. K. Chu, E. Mijiwska, and T. Tang. Nanosized carbon black combined with

Ni2O3 as “universal” catalysts for synergistically catalyzing carbonization of polyolefin wastes to synthesize carbon nanotubes and application for supercapacitors. Environmental Science & Technology 48: 4048 – 4055 (2014).

S. Dey, S. Santra, A. Midya, P. K. Guha, and S. K. Ray. Synthesis of CuxNi(1-x)O coral like nanostructures and its application in design of

re-usable toxic heavy metal ion sensor based on adsorption mediated electrochemical technique. Environmental Science: Nano 4:191 – 202 (2017).

S. Dey, S. Bhattacharjee, M. G. Chaudhuri, R. S.Bose, S. Halder, and C. K. Ghosh. Synthesis of pure nickel(III) oxide nanoparticles at room temperature for Cr(VI) ion removal. RSC Advances 5: 54717 –54726 (2015).

W. F. Chen, and S. Y. Wu. The effect of temperature on the preparation of electrochromic nickel oxide by an electroless method. Applied Surface Science 253:1907 – 1911 (2006).

W. F. Chen, S. Y. Wu, and Y. F. Ferng. The electrochromic properties of nickel oxide by chemical deposition and oxidization. Materials

Letters 60: 790 – 795 (2006).

S. Hu, F. Li, and Z. Fan. The Synergistic Effect of nitrogen and Ni2O3 over TiO2 photocatalyst in the degradation of 2, 4, 6-trichlorophenol under visible light. Bulletin of the Korean Chemical Society 33: 4052 – 4058 (2012).

W. Zhao, W. Ma, C. Chen, J. Zhao, and Z. Shuai. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. Journal of the American Chemical Society 126:4782 – 4783 (2004).

N. A. Bakr, Z. T. Khodair, and A. M. Shano. Effect of aqueous solution molarity on structural and optical properties of Ni0.92Co0.08O thin films prepared by chemical spray pyrolysis method. International Journal of Thin Films Science and Technology 4:111 – 119 (2015).

S. Sriram, and A. Thayumanavan. Structural, optical and electrical properties of NiO thin films prepared by low cost spray pyrolysis technique. International Journal of Materials Science and Engineering 1:118 – 121 (2013).

K. S. Usha, R. Sivakumar, and C. Sanjeeviraja. Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequencymagnetron sputtering technique. Journal of Applied Physics 114: 123501 (2013).

S. Dendouga, S. Benramache, and S. Lakel.Influence of film thickness on optical and electrical properties of nickel oxide (NiO) thin films. Journal of Chemistry and Materials Research 5: 78-84 (2016).

B. A. Reguig, A. Khelil, L. Cattin, M. Morsli, and J.C. Berne`de. Properties of NiO thin films deposited by intermittent spray pyrolysis process. Applied Surface Science 253: 4330 – 4334 (2007).

H. Kamal, E. K. Elmaghraby, S. A. Ali, and K. Abdel-Hady. The electrochromic behavior of nickel oxide films sprayed at different preparative conditions. Thin Solid Films 483: 330 – 339 (2005).

S. A. Mahmoud, S. Alshomer, and M. A. Tarawnh. Structural and optical dispersion characterization of sprayed nickel oxide thin films. Journal of Modern Physics 2: 1178 – 1186 (2011).

L. Cattin, B. A. Reguig, A. Khelil, M. Morsli, K.Benchouk, and J. C. Berne`de. Properties of NiO thin films deposited by chemical spray pyrolysis using different precursorr solutions. Applied Surface Science 254: 5814 – 5821 (2008).

P. S. Aggarwal, and A. Goswami. An Oxide of tervalent nickel. Journal of Physical Chemistry 65:2105 (1961).

M. Z. Butt, D. Ali, M. Aftab, and M. U. Tanveer. Surface topography and structure of laser-treated high-purity zinc. Surface Topography: Metrology and Properties 3: 035002 (2015).

D. Ali, and M. Z. Butt. Structural characteristics and inverse Hall–Petch relation in high-purity nickel irradiated with nanosecond infrared laser pulses. Physica B: Condensed Matter 444: 77 – 84 (2014).

B. D. Cullity, and S. R. Stock. Elements of X-ray Diffraction. 3rd edition, Prentice-Hall, New York(2001).

M. Z. Butt, F. Bashir, and S. Arooj. Effect of UV laser irradiation on the hardness and structural parameters of AgxPd1−x (0.4 ≤ x ≤ 0.6) alloys. Applied Surface Science 259: 740 – 746 (2012).

B. E. Warren, and E. P. Warekois. Stacking faults in cold worked alpha-brass. Acta Metallurgica 3: 473– 479 (1955).

D. Ali, M. Z. Butt, B. Arif, A. A. Al-Ghamdi, and F.Yakuphanoglu. The role of Al, Ba, and Cd dopant elements in tailoring the properties of c-axis oriented ZnO thin films. Physica B: Condensed Matter 506:83 – 93 (2017).

A. R. Balu, V. S. Nagarethinam, N. Arunkumar, and M. Suganya. Nanocrystalline NiO thin films prepared by a low cost simplified spray technique using perfume atomizer. Journal of Electron Devices 13: 920 – 930 (2012).

C. Mrabet, M. B. Amor, A. Boukhachem, M. Amlouk, and T. Manoubi. Physical properties of La-doped NiO sprayed thin films for optoelectronic and sensor applications. Ceramics International 42:5963 – 5978 (2016).

F. S. Hashim, and N. A. Sami. Effect of Zn doping on structural and some optical studies of nano NiO films prepared by sol – gel technique. International Letters of Chemistry Physics and Astronomy 53: 31– 40 (2015).

J. Tauc. Amorphous and liquid semiconductors.Plenum Press London and New York (1974).

H. Aydin, S. A. Mansour, C. Aydin, A. A. Al-Ghamdi, O. A. Al-Hartomy, F. El-Tantawy, and F.Yakuphanoglu. Optical properties of nanostructure boron doped NiO thin films. Journal of Sol-Gel Science and Technology 64: 728 – 733 (2012).

S. M. Reda, and S. M. Al-Ghannam. Synthesis and electrical properties of polyaniline composite with silver nanoparticles. Advances in Materials Physics and Chemistry 2, 75 – 81 (2012).

S. Adachi. Optical properties of crystalline and amorphous semiconductors. Kluwer, Boston (1999).

H. Kamal, E. K. Elmaghraby, S. A. Ali, and K. Abdel-Hady. Characterization of nickel oxide films deposited at different substrate temperatures using spray pyrolysis. Journal of Crystal Growth 262: 424– 434 (2004).

D. P. Joseph, M. Saravanan, B. Muthuraaman,P. Renugambal, S. Sambasivam, S. P. Raja, P.Maruthamuthu, and C. Venkateswaran. Spray deposition and characterization of nanostructured Li doped NiO thin films for application in dyesensitized solar cells. Nanotechnology 19: 485707(2008).

P. S. Patil, and L. D. Kadam. Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Applied Surface Science 199: 211–221 (2002).

T. Chtouki, L. Soumahoro, B. Kulyk, H. Bougharraf,B. Kabouchi, H. Erguig, and B. Sahraoui. Comparison of structural, morphological, linear and nonlinear optical properties of NiO thin films elaborated by spin-coating and spray pyrolysis.Optik 128: 8 – 13 (2017).

S. R. Nalage, M. A. Chougule, S. Sen, P. B. Joshi, and V. B. Patil. Sol–gel synthesis of nickel oxide thin films and their characterization. Thin Solid Film 520: 4835 – 4840 (2012).

V. Patil, S. Pawar, M. Chougule, P. Godse, R.Sakhare, S. Sen, and P. Joshi. Effect of annealing on structural, morphological, electrical and optical studies of nickel oxide thin films. Journal of Surface Engineered Materials and Advanced Technology 1: 35 – 41 (2011).

G. Turgut, E. Sonmeza, and S. Duman. Determination of certain sol-gel growth parameters of nickel oxide films. Ceramics International 41: 2976 – 2989 (2015).

S. A. Mahmoud, A. A. Akl, H. Kamal, and K. Abdel-Hady. Opto-structural, electrical and electrochromic properties of crystalline nickel oxide thin films prepared by spray pyrolysis. Physica B 311: 366 –375 (2002).

M. Anwar, and C. A. Hogarth. Structural investigations and colour centres in MoO3 films deposited by vacuum evaporation, International Journal of Electronics 67: 567 – 576 (1989).

U. Chaitra, D. Kekuda, and K. Mohan Rao. Dependence of solution molarity on structural, optical and electrical properties of spin coated ZnO thin films. Journal of Materials Science: Materials in Electronics 27: 7614 – 7621 (2016).

F. Urbach. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review 92: 1324

(1953).

D. Ali, M. Z. Butt, B. Arif, A. G. Al-Sehemi, A. A. Al-Ghamdi, and F. Yakuphanoglu. Li induced enhancement in c-axis orientation and its effect on structural, optical, and electrical properties of ZnO thin films. Materials Research Express 4: 026405 (2017).

K. C. Lalithambika, K. Shanthakumari, and S. Sriram. Optical Properties of CdO Thin Films deposited by Chemical Bath Method. International Journal of ChemTech Research 6: 3071 – 3077 (2014).

S. Benramache, and M. Aouassa. Preparation and characterization of p-type semiconducting NiO thin Films Deposited by Sol-Gel Technique. Journal of Chemistry and Material Research 5: 119 – 122(2016).

A. J. R. Mary, and S. Arumugam. Structural and optical studies of molarity based ZnO thin films. Nano Hybrids and Composites 17: 140 – 148 (2017).

F. Z. Boutebakh, A. Beloucif, M. S. Aida, A. Chettah, and N. Attaf. Zinc molarity effect on Cu2ZnSnS4 thin film properties prepared by spray pyrolysis. Journal of Materials Science: Materials in Electronics 29: 4089 – 4095 (2018).

D. Ali, M. Z. Butt, I. Muneer, F. Bashir, and M. Saleem. Correlation between structural and optoelectronic properties of tin doped indium oxide thin films. Optik 128: 235 – 246 (2017).

S. Riaz, S. Rehman, M. Abutalib, and S. Naseem. Structural, Optical, and dielectric properties of aluminum oxide nanofibers synthesized by a lowertemperature sol–gel approach. Journal of Electronic Materials 45: 5185 – 5197 (2016).

S. Benramache and B. Benhaoua, Influence of Urbach energy with solution molarity on the electrical conductivity in undoped ZnO thin films, Journal of Nano- and Electronic Physics 8: 02025 (2016).

A. Hafdallah, F. Yanineb, M.S. Aida, and N. Attaf. In doped ZnO thin films. Journal of Alloys and Compounds 509: 7267 – 7270 (2011).

M. Jlassi, I. Sta, M. Hajji, and H. Ezzaouia. Synthesis and characterization of nickel oxide thin films deposited on glass substrates using spray pyrolysis. Applied Surface Science 308: 199 – 205 (2014).

M. Vigneshkumar, S. S. Muthulakshmi, J. Pandiarajan, A. Saranya, and N. Prithivikumaran. Structural and optical properties of nanocrystalline nickel oxide thin film by spray pyrolysis technique. International Journal of Technical Research and Applications 38: 52 – 56 (2016).

A. Alshahrie, I. S. Yahia, A. Alghamdi, and P. Z. A. Hassan. Morphological, stuctural and optical dispersion parameters of Cd-doped NiO

nanostructure thin film. Optik 127: 5105 – 5109 (2016).

C. F. K. Lingshirn, Semiconductor Optics, 4th edition, Springer-Verlag, Berlin Heidelberg (2012).

F. Yakuphanoglu, A. Cukurovali, and I. Yilmaz. Refractive index and optical absorption properties of thecomplexes of a cyclobutane containing thiazolyl hydrazone ligand. Optical Materials 27:1363 – 1368 (2005).

A. E. Korashya, H. E. Zahed, and M. Radwan. Optical studies of [N(CH3)4]2CoCl4, [N(CH3)4]2MnCl4 single crystals in the normal paraelectric phase. Physica B: Condensed Matter 334: 75 – 81 (2003).

M. M. Wakkad, E. K. Shokr, and S. H. Mohamed. Optical and calorimetric studies of Ge-Sb-Se glasses. Journal of Non-Crystalline Solids 265: 157– 166 (2000).

A. B. Khatibani, and S. M. Rozati. Optical and morphological investigation of aluminum and nickel oxide composite films deposited by spray pyrolysis method as a basis of solar thermal absorber. Bulletin of Materials Science 38: 319 – 326 (2015).

P. Sharma, V. Sharma, and S. C. Katyal. Variation of optical constants in Ge10Se60Te30 thin film, Chalcogenide Letters 3: 73 – 79 (2006).

I. Horcas, R. Fernández, J. M. G. Rodríguez, J.Colchero, J. G. Herrero, and A. M. Baro. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments 78: 013705 (2007).

Downloads

Published

2021-03-09

How to Cite

Aftab, M. ., Butt, M. Z. ., Ali, D. ., Tanveer, M. U. ., & Hussnain, A. (2021). Effect of Molarity on the Structure, Optical Properties, and Surface Morphology of (002)-Oriented Ni2O3 Thin Films Deposited via Spray Pyrolysis: Effect of Molarity on the Properties of Ni2O3 Thin Films. Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, 57(2), 51–74. Retrieved from http://www.ppaspk.org/index.php/PPAS-A/article/view/23

Issue

Section

Articles