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Abstract: This paper introduces a flexible scalar-splitting (f-SCSP) iterative scheme and examines its convergence 
properties. The approach also yields a straightforward matrix-splitting preconditioner for the original linear system. 
To confirm the theoretical results and evaluate practical performance, comprehensive numerical examinations are 
performed on various test cases. The findings indicate that the proposed method is practical, reliable, and more efficient 
than existing techniques for handling demanding classes of complex symmetric linear systems.
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1.    INTRODUCTION

We focus on the iterative resolution of linear 
systems.

(1)

where  and . In Equation (1), 
 is a matrix which is non-Hermitian and 

symmetric  with  
are real and symmetric, and  and  are positive 
definite and positive semidefinite matrices, 
respectively. In this text, the imaginary quantity 
iota, , is denoted by the symbol . Let there 
be a splitting   of the matrix  
i.e.,  is nonsingular and . This 
splitting gives rise to a fixed-point iterative method 
of the following form.

,	     (2)

where  is a given starting vector.

Systems corresponding to Equation (1) appear 
frequently throughout computational science and 

in numerous branches of engineering, where they 
form a core component of many modelling and 
simulation tasks. A few notable examples include 
Diffuse Optical Tomography (DOT); very helpful 
for small animal imaging, breast cancer detection, 
and functional brain imaging [1]. Because of the 
nature of light propagation in scattering media 
and the usage of complex coefficients to simulate 
absorption and diffusion, the mathematical 
modelling and numerical computation required 
in DOT frequently result in complex symmetric 
linear systems. When time-dependent PDEs are 
treated with FFT-driven schemes, the resulting 
discretisations commonly lead to complex 
symmetric linear algebraic systems, particularly in 
frequency-domain formulations or in spectral and 
pseudo-spectral frameworks [2].

Advanced scientific applications in structural 
dynamics, especially those involving damping, 
frequency-domain analysis, or non-proportional 
damping models, the governing equations lead 
to complex symmetric linear systems [3]. Lattice 
Quantum Chromo Dynamics (Lattice-QCD) 



[4] is a computational approach for examining 
QCD. Complex symmetric linear systems emerge 
naturally in various formulations of Lattice-QCD, 
particularly in fermion discretization such as 
staggered fermions or twisted mass fermions [5]. 
Numerical computations in molecular scattering is 
a crucial subject in quantum chemistry, chemical 
physics, and dynamics. The foundational theory 
relies on quantum scattering theory, resulting 
in extensive linear algebraic systems that are 
frequently complex and occasionally symmetrical 
under certain conditions [6].

Recently, Ahmed et al. [7] and Kanwal et 
al. [8] suggested that if the forward operator 

 is symmetric, iterative over-relaxation can 
solve (1) efficiently. Axelsson and Kucherov [9] 
presented an iterative method for real matrices, 
Benzi and Bertaccini [10] proposed a block 
preconditioning for real-valued iterative algorithms, 
Bai [11] and Bai et al. [12, 13] introduced a modified 
Hermitian and skew-Hermitian splitting (MHSS) as 
well as preconditioned-MHSS (PMHSS) iterative 
methods and Wang et al. [14] improved the PMHSS 
method. Various preconditioning techniques have 
been developed to enhance the convergence rate of 
these iterative methods. For instance, Salkuyeh et 
al. [15], Hezari et al. [16], Axelsson and Salkuyeh 
[17], Xie and Li [18], Xiang and Zhang [19], 
and Salkuyeh [20], Zhao et al. [21] put forward 
a Single-Step-MHSS method (SMHSS) and its 
variants with a flexible-shift (f-SMHSS). Wen et al. 
[22, 23] also suggested some iterative methods and 
respective preconditioning techniques. Vorst and 
Melissen [24], Freund [25], while, Bunse-Gerstner 
and Stöver [26] presented the conjugate gradient-
type methods; Clements et al. [27] introduced 
Krylov-type methods. In particular, Hezari et al. 
[28] proposed the Scale-Spliting (SCSP) method 
employing a scaling approach. Later Salkuyeh [29] 
suggested a two-step SCSP method, while Salkuyeh 
and Siahkolaei [30] introduced a two-parameter 
SCSP (TSCSP). Zheng et al. [31] also introduced 
a double-step scale splitting iterative method. Li et 
al. [32, 33] put forward a dual-parameter double-
step splitting iteration method, and two iterative 
methods with quasi-combining real and imaginary 
parts. However, the scaled parameters mentioned 
above are given in advance. Motivated by the 
optimization models given by Zhao et al. [21], this 
study introduced a flexible-scalar strategy based 
on the SCSP iterative method, which the scaled 

parameters  are determined by minimizing the 
residuals at each iteration. 

Following we present the essential notations. 
The set of  real (complex) arrays and the 
-dimensional real (complex) vector space are 
represented as  and  (  and ) 
respectively. The conjugate and transpose of a 
matrix or a vector  is  and  repectively. A 
matrix  ( ) is said to be Hermitian 
(symmetric) positive definite (or semidefinite), 
denoted by  (or ); if it is Hermitian (or 
symmetric) and for all  
( ) holds true. The real and imaginary parts 
of a complex number  are denoted by  and 

, respectively.  is used to represent the 
spectral radius of a matrix  and  represents the 
spectrum set of the matrix. The condition number 
of a matrix  is denoted by . The splitting of 
, defined as ,  is said to be convergent if 

.

A broad range of preconditioning strategies 
has been introduced in past to accelerate the 
convergence behavior of such iterative schemes. 
For instance, a double-step scale splitting iterative 
method employing a scaling approach given by 
Salkuyeh and Siahkolaei [30]. By multiplying 
two parameters  and  both sides 
of the Equation (1), two equivalent systems can be 
respectively yielded, i.e.,  
and , where  is a real 
positive number. Then two fixed-point equations 
can be generated as follows:

	,          (3)

.        (4)

Zheng et al. [31] expanded on the PMHSS 
iterative method, suggested by Bai et al. [13], and 
proposed the following alternative iterative scheme:

,	

whereas the Equations (3) and (4) are in fact two 
preconditioned systems in Equation (2) when 

 and , that is to say, 
the preconditioned matrices are both the scalar 
matrices. Equations (3) and (4) are one when , 
therefore, the alternation of the DSS iterative method 
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was only carried out in twins of two preconditioned 
systems. This work focuses on linear systems whose 
coefficient matrices are complex symmetric yet not 
Hermitian. We focus on the scaled preconditioned 
splitting iterative methods generally and consider 
the systems in Equation (2) when  
with ,  are both real numbers in this study.

2.    MATERIALS AND METHODS

To provide context and completeness, this section 
begins with a brief overview of existing methods for 
solving linear systems whose coefficient matrices 
are complex symmetric but non-Hermitian, as in 
Equation (1). We then introduce the Flexible-Scalar 
Splitting (f-SCSP) scheme.

2.1. The Relevant Methods

2.1.1. MHSS method [12, 13]:

The MHSS iteration method: Let  be 
an initial guess. For , until  
converges, compute   according to the 
following sequence:

where  is a given positive constant.

2.1.2. The SMHSS and f-SMHSS methods [21]:

(1) The SMHSS iteration method: Let 
 be an initial guess. For 

, until   converges, compute   
according to the following sequence 

(2) The f-SMHSS iteration method: Let  
be an initial guess, for , , until  

 converges, the single-step iteration formula 
for computing the next   is as follows.

Step 1: Compute .

Step 2: Solve the equation

where the flexible shift  is the solution 
to the following optimization problem: 

 
with

 
.

Step 3: If  , stop; otherwise, set  
and return to Step 1.

2.1.3. The scale-splitting (SCSP) method [28]:

Let  be a real positive constant and the matrix 
 be nonsingular. By multiplying the 

complex number  through both sides of 
Equation (1), the following equivalent system can 
be obtained.

			   (5)

Where . By 
rewriting it as the system of fixed-point equations:

the SCSP iteration method can be summarized as 
follows.

The SCSP iteration method: Let  be 
an initial guess. For , until  
converges, compute  according to the 
following sequence:

    (6)
where  is a given positive constant.

2.2. Proposed Iterative Method: The Flexible-
Scalar Splitting (f-SCSP)

The variant system can be obtained by multiplying 
the complex number ,

To use the flexible-scalar strategy, the f-SCSP 
method is formulated as follows:

       (7)

where,

	 (8)

with ,  .
Remark: In fact, the exact solutions of the quadratic 
programming models in Equation (8) can be given 
theoretically by simple computing. To avoid the 
tedious computation of 1( )kW Tα −+ , we can use the 
inexact line search to find the approximations of .
In matrix-vector form, the scheme presented in 
Equation (7) can be equivalently rewritten as:

     (9)
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where,
  (10)

Here,  is the iteration matrix of the f-SCSP 
method. In fact, Equation (9) is also generated by 
the splitting,  with

Moreover, 
and  can be identified 

as a preconditioner to all linear systems of type 
Equation (1).

Consequently, the preconditioned system can be 
expressed as follows.

			   (11)

We now investigate the optimal parameter selection 
and the spectral radius characteristics of the iteration 
matrix, and assess the convergence behavior of the 
previously described f-SCSP method.

Theorem 2.1: Let be a non-Hermitian but symmetric 
matrix , ( ) 
with both  being symmetric,  and 

 being both positive definite positive. Let  be 
positive real numbers and  and  be the 
extremal eigenvalues of the matrix . Then 
the following statements hold true:
(i) In the f-SCSP method, the upper bound of the 
spectral radius  is:

	 	 (12)

(ii) The sequence  produced by Method 2.1 
converges to the unique solution to Equation (1) for 
any initial guess , provided that:

In particular, the iterative scheme presented in 
Equation (6) is convergent if  for the case that  
is a positive semidefinite matrix.

Proof (i): By Equation (12) and direct calculations, 
we have:

 
 
 

 

In the last step, the equality holds since  is a 
symmetric positive definite matrix, and then so is 

.
It is known that is positive. By introducing the 
following function:

it is obtained that  is a decreasing function

with respect to  since .

Thus Equation (12) provides the upper bound of 
.

Proof (ii): For the case that  is 
equivalent to  by simple calculations. 

And then , so the sequence  
produced by the f-SCSP method converges to the 
unique solution to Equation (1) for any initial guess 

.
For the case that , then  
at that time. Thus,  is only equivalent to 

.

It is well-known that  if  is a positive 
semidefinite matrix. And then , the 
iterative scheme in Equation (6) is convergent if 

. The proof is completed.

Corollary 2.1: Assuming the conditions of 
Theorem 2.1 hold, the optimal the parameters  
that minimises the upper bound  of the spectral 
radius  is given by:

	 (13)

A similar proof is presented in [28, theorem 1], 
which is omitted here.

Theorem 2.2: Let be a non-Hermitian, symmetric 
matrix , with  
being both symmetric, also,  being positive-
definite and  positive definite or semidefinite. 
Then  if for all , it holds that 

.

Proof:  Let an eigenvalue of the matrix  
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be  with the corresponding eigenvector 
, i.e., , which means, 

. Then we have from 
the assumptions that:

We obtain  by direct calculations 
under . The theorem is proved.
Remark: Theorem 2.2 implies that all eigenvalues 
of the matrix  lie along the imaginary axis.
The last of this section, a property of the matrix 

 can be given.

Theorem 2.3: Let  be a non-
Hermitian but symmetric matrix (
) with   be real, symmetric, and  
being positive-definite and  positive definite or 
semidefinite. Assuming that   is any eigenvalue 
of the matrix  defined by Theorem (2.2), the 

.
Proof: Let  be an eigenvalue of the matrix  
and  be the corresponding eigenvector of the 
eigenvalue  with . It is known that:

So, we have:

From assumptions, . 
Then we yield .

3.    RESULTS AND DISCUSSION

This section presents a series of numerical 
experiments designed to evaluate the practicality, 
reliability, and computational efficiency of the 
proposed f-SCSP method in comparison with 
existing approaches. The evaluation is based on 
three key performance metrics: the number of 
iterations to convergence (IT), the total processing 
time taken by our computer in seconds for 
convergence (CPU), and the final residual norm 
(RES). These measures provide a comprehensive 
assessment of both the convergence characteristics 
and computational cost of each method.

The performance of f-SCSP is assessed 
in comparison with four well-known iterative 
techniques. The MHSS method [12, 13], SMHSS 
method [21], the f-SMHSS method [21], and the 

SCSP method [28], which were introduced and 
discussed in Section 2. In all numerical experiments, 
the initial guess is taken as the zero vector, and the 
iterations are terminated once the relative residual 
norm meets the predefined stopping criterion, set 
here as an -norm of the residual . The 
iteration process is considered unsuccessful if 
convergence is not achieved within a maximum 
of 8000 iterations. This limit guarantees an 
equitable assessment among all techniques and 
aids in avoiding excessive computation time when 
convergence is not reached as expected. All these 
experiments are done with different vector space 
sizes  given ; the results provide 
empirical validation of the theoretical analysis 
and demonstrate the performance of the proposed 
method.

Example 3.1 [28]: The linear system of equations 
in (1) represents the form , with 

 
and  where , 

,  
and . The vector  on the 
right-hand side can be choosen as , 
where  is the vector with all entries equal to 1.

Example 3.2 [28]: The complex linear systems (1) 
is of the form:

where  denote the driving circular frequency, 
with  and  representing the inertia and 
stiffness matrices, and  and  are denoting 
the viscous and hysteretic damping matrices. 
The viscous damping is modelled as  
where  is given as the damping coefficient, 

, , , with 
, and mesh

size . Accordingly,  takes the form

of an  block-tridiagonal matrix with block 
dimension . We further specify 
, , and construct the right-hand vector 

, where  denotes the vector with all 
components equal to . To standardise the system, 
we pre-multiply both sides by thereby obtaining 
a normalised formulation.

Example 3.3: Consider the two-dimensional 
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convection-diffusion equation:

,
the region of interest is considered over the unit 
square domain  assuming constant 
coefficient  and imposing Dirichlet boundary 
conditions. Employing the five-point central 
difference discretisation leads to the linear system 
(1), characterised by the following coefficient 
matrix:

 and ,
where the matrices  and  are given by:

with , being the mesh Reynolds number, 
and  being the equidistant step-size. 
Moreover, the right-hand side vector  is taken to 
be , with  being 
the true solution.

In the conducted experiments, matrices 
with dimensions approaching  (i.e., 

) were examined. 
The numerical results are summarized in Tables 
1–3. Evidently, the SCSP and f-SCSP methods 
perform commendably; the f-SCSP method 
achieves convergence in the fewest iterations, 
whereas the SCSP method demonstrates superior 
computational efficiency in most tests. The 
challenge of balancing iteration count and 
execution time to develop an enhanced method 
constitutes a key direction for forthcoming research. 

When compared against its counterparts, 
SCSP, f‑SMHSS, SMHSS and MHSS, the proposed 
f‑SCSP method exhibits a compelling balance 
between iteration count and computational cost. 
Table 1 shows results from Example 3.1, and that 
SCSP is achieving convergence in 10-103 iterations 
across increasing problem sizes, closely matching 
the iteration efficiency of flexible f-SCSP but 
requiring only approximately half the CPU time (e.g., 
0.0153s vs. 0.0592s for ), highlighting 
its lower overhead in parameter selection. Although 
f‑SCSP attains marginally fewer iterations in some 
cases, its per‑iteration optimization of  sustain 
a significant time penalty. In contrast, classical 
SMHSS and MHSS methods demand up to an order 
of magnitude more iterations and substantially 
longer runtimes, often exceeding SCSP by factors 
of 5-10, reflecting the superior conditioning induced 
by the scaled preconditioning. Overall, f-SCSP 

converges in fewer iterations with better efficiency 
in all system sizes compared to MHSS, SMHSS, 
and f-SMHSS. The comparison between f-SCSP 
and SCSP is however subtle; f-SCSP converges 
with fewer iterations and a slightly better relative 
residual in larger system sizes, but the CPU time 
shows that SPSC is the most efficient throughout. 
Similarly, Table 2 shows results from Example 3.2, 
and again f-SPSC and SPSC are very close, with 
f-SPSC convergeing in fewer iterations and with 
better relative residual, and SPSC being faster in 
terms of CPU computational time. All the other 
methods follow f-SCSP and SCSP. In Table 3, 
we see results from Example 3, which show that 
f-SCSP performs superior to all of the existing 
methods, including SCSP, in terms of all, number of 
iterations required to converge, the relative residual, 
and the required CPU time for computation, while 
SMHSS variants exceed hundreds to thousands of 
iterations. This consistent performance highlights 
SCSP’s robustness and its practical advantage for 
large‑scale complex symmetric systems.

A catch is the use of the initial guess. All 
our experiments use , but many practical 
solvers benefit from warm starts. Finally, while the 
convergence proofs (Theorems 2.1-2.3) guarantee 

 under stated assumptions, the potential 
for combining f-SCSP with Krylov acceleration 
can be addressed, representing an opportunity for 
further speed‑ups in challenging regimes.

Our numerical results presented in the tables 
are given in line plots. Figure 1 shows the CPU 
time of taken by the respective methods plotted 
vs the vector space size  in Example 3.1. The 
f-SCSP is much faster than most other methods, 
and it performs very close to the existing SCSP. 
Similarly, Figure 2 show that in 3.2, as the system 
size increases, the SCSP performs better than the 
proposed method. However, it can be seen in Figure 
3 for Example 3.3 that both methods perform 
equally well for all system sizes. Figure 4 show 
the convergence behavior of the proposed method 
in Example 3.1 with different system sizes. The 
residual error is plotted vs the number of iterations, 
and f-SCSP outperforms the existing methods 
in all tests, as demonstrated. Similarly, Figure 5 
shows how f-SCSP outperforms all of the existing 
methods in convergence in Example 3.2. In Figure 
6, the difference in convergence between f-SCSP 
and SCSP looks tight, especially in figure 6(b), 
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m SCSP f-SCSP f-SMHSS SMHSS MHSS
Iter. Count 10 10 16 18 54

16 CPU Time (s) 0.015 0.059 0.048 0.026 0.160
Res. Err. 5.218e-7 9.694e-7 8.918e-7 6.845e-7 8.238e-7
Iter. Count 16 16 26 24 131

32 CPU Time (s) 0.150 0.243 0.306 0.202 1.840
Res. Err. 9.321e-7 4.443e-7 9.043e-7 7.460e-7 9.525e-7
Iter. Count 22 20 32 36 171

48 CPU Time (s) 0.419 0.608 1.113 0.683 5.053
Res. Err. 5.287e-07 8.892e-07 7.711e-07 9.641e-07 9.716e-07
Iter. Count 28 26 49 55 191

64 CPU Time (s) 0.809 1.063 2.681 1.680 5.954
Res. Err. 6.803e-07 8.043e-07 9.987e-07 8.918e-07 9.875e-07
Iter. Count 63 46 119 108 306

128 CPU Time (s) 5.971 6.999 13.862 9.638 52.724
Res. Err. 8.541e-07 9.464e-07 9.601e-07 8.168e-07 9.893e-07
Iter. Count 63 60 325 332 997

256 CPU Time (s) 28.805 42.680 199.335 302.205 804.894
Res. Err. 8.258e-07 8.122e-07 9.949e-07 9.929e-07 9.981e-07
Iter. Count 103 84 1093 7080 3345

512 CPU Time (s) 252.411 510.790 3640.200 17965.00 22926.00
Res. Err. 9.731e-07 9.537e-07 9.962e-07 9.995e-07 9.993e-07

m SCSP f-SCSP f-SMHSS SMHSS MHSS
Iter. Count 37 40 268 268 34

16 CPU Time (s) 0.053 0.104 0.772 0.372 0.094
Res. Err. 8.345e-07 8.514e-07 9.782e-07 9.667e-07 9.539e-07
Iter. Count 42 38 245 244 49

32 CPU Time (s) 0.243 0.364 1.729 1.107 0.557
Res. Err. 8.969e-07 9.367e-07 9.600e-07 9.878e-07 8.624e-07
Iter. Count 44 39 231 231 82

48 CPU Time (s) 0.584 0.808 2.900 1.795 1.310
Res. Err. 8.230e-07 9.204e-07 9.940e-07 9.771e-07 8.920e-07
Iter. Count 45 40 222 222 128

64 CPU Time (s) 1.147 1.101 6.738 3.955 6.312
Res. Err. 7.628e-07 7.895e-07 9.781e-07 9.625e-07 9.766e-07
Iter. Count 46 41 200 199 440

128 CPU Time (s) 4.321 5.710 49.653 30.106 138.168
Res. Err. 7.429e-07 7.176e-07 9.574e-07 9.870e-07 9.928e-07
Iter. Count 46 41 177 177 835

256 CPU Time (s) 18.428 26.657 225.347 143.796 1118.5
Res. Err. 8.145e-07 7.801e-07 9.778e-07 9.643e-07 9.998e-07
Iter. Count 46 41 153 152 3160

512 CPU Time (s) 140.608 186.084 581.892 355.640 17228.00
Res. Err. 8.371e-07 7.998e-07 9.613e-07 9.838e-07 9.987e-07

Table 1. Tests from Example 3.1. The first column lists the system sizes in . The second column shows iteration 
count, CPU time, and residual error. Columns 3-7 present the results from SCSP, f-SCSP, f-SMHSS, and MHSS 
respectively.

Table 2. Tests from Example 3.2. The first column lists the system sizes in . The third column shows iteration count, 
CPU time, and residual error. Columns 3-7 present the results from SCSP, f-SCSP, f-SMHSS, and MHSS respectively.
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but f-SCSP outperforms SCSP both in number of 
iterations and final residual error, taking half the 
number of iterations.

Moreover, Figure 7 shows the eigenvalues spread 
of the preconditioned matrix vs the actual system 
matrix in Examples 3.1 for a system size of 
. The real part of an eigenvalue is directly related to 
how a system behaves over time. If the real part is 
positive, the system grows exponentially, meaning 
it becomes unstable over time. If the real part is 
negative, the system decays exponentially, meaning 

it settles down to zero. In all preconditioned cases, 
we see that the eigenvalues have a real part of 
one and that the system has no fast growing or 
decaying. Instead, it might oscillate or stay at a 
constant amplitude. This doesn’t guarantee that the 
matrix is strictly stable, but it demonstrates that the 
matrix is not unstable either. The same behaviour 
of strong clustering of the spectrum resulting due to 
preconditioning can also be observed in Figures 8 and 
9 for Example 3.2 and 3.3, respectively, where the 
preconditioned matrix  evidently has a faster 
convergence compared to the original matrix  .

m SCSP f-SCSP f-SMHSS SMHSS MHSS
Iter. Count 6 3 131 131 150

16 CPU Time (s) 0.009 0.010 0.468 0.201 0.443
Res. Err. 5.645e-07 2.396e-07 9.467e-07 9.374e-07 9.449e-07
Iter. Count 6 3 226 226 238

32 CPU Time (s) 0.040 0.036 1.938 1.241 1.934
Res. Err. 5.645e-07 2.396e-07 9.974e-07 9.955e-07 9.782e-07
Iter. Count 6 3 345 323 347

48 CPU Time (s) 0.080 0.080 5.208 3.519 5.710
Res. Err. 5.645e-07 2.396e-07 9.934e-07 9.809e-07 9.956e-07
Iter. Count 6 3 437 428 624

64 CPU Time (s) 0.158 0.155 11.377 7.933 15.952
Res. Err. 5.645e-07 2.396e-07 9.876e-07 9.973e-07 9.848e-07
Iter. Count 6 3 815 751 912

128 CPU Time (s) 0.887 0.852 121.434 83.248 177.660
Res. Err. 5.645e-07 2.396e-07 9.942e-07 9.898e-07 9.914e-07
Iter. Count 6 3 1426 1350 1905

256 CPU Time (s) 3.062 2.553 1091.90 814.111 1906.40
Res. Err. 5.645e-07 2.396e-07 9.955e-07 9.950e-07 9.973e-07
Iter. Count 6 3 4712 4421 5233

512 CPU Time (s) 15.015 13.637 11507.4 17269.0 42689.00
Res. Err. 5.645e-07 2.396e-07 9.9966e-07 9.994e-07 9.9989e-07

Table 3. Tests from Example 3.3. The first column lists the system sizes in . The third column shows iteration count, 
CPU time, and residual error. Columns 3-7 present the results from SCSP, f-SCSP, f-SMHSS, and MHSS respectively.

Fig. 1. Comparing f-SCSP with the existing methods in 
terms of CPU time from Example 3.1. f-SCSP performs 
better than its most counterparts.

Fig. 2. Comparing f-SCSP with the existing methods in 
terms of CPU time from Example 3.2. f-SCSP performs 
better than its counterparts, and is close to SCSP, if not 
matches its performance. f-SCSP takes a little longer to 
converge for larger system sizes.
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Fig. 3. Comparing f-SCSP with the existing methods in 
terms of CPU time from Example 3.3. f-SCSP performs 
better than its counterparts, and performs equally well as 
SCSP, matching its performance.

Fig. 4. The convergence behavior of f-SCSP vs its 
counterparts. (a) show tests from Example 3.1 with 
vector space  and (b) shows . Clearly, the 
convergence in f-SCSP dominates others with a margin.

Fig. 5. The convergence behavior of f-SCSP vs its 
counterparts. (a) test results from Example 3.2 with 
vector space  and (b) shows results with vector space 

. f-SCSP dominates others in convergence with a 
margin. (a) show the dominance of f-SCSP clearly; 
whereas (b) shows convergence line of f-SCSP close to 
SCSP; however, f-SCSP convergence in fewer iterations 
and with lower residual error.

Fig. 6. The convergence behavior of f-SCSP vs its 
counterparts. (a) test results from Example 3.3 with 
vector space  and (b) shows results with vector space 

. f-SCSP dominates others in convergence with a 
margin. (a) show the dominance of f-SCSP clearly; 
however, (b) shows almost overlapping lines for f-SCSP 
and SCSP; but f-SCSP convergence in half the number 
of iterations required by SCSP and with lower residual 
error.
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4.    CONCLUSIONS 

In this paper, we have presented a flexible-scalar 
splitting iterative methods based on the SCSP 
method for effectively solving a broad category 
of complex symmetric linear systems. Special 
attention is given to the structure and properties 
of the equivalent systems  
particularly in cases where the parameters  is 
chosen to preserve the symmetry and improve the 
conditioning of the original system. Theoretical 
analyses have been conducted to demonstrate 
that the proposed method is convergent under 
reasonable and practically relevant assumptions. 
Moreover, explicit expressions linking the optimal 
parameters  to the spectral radius of the associated 
iteration matrix have been established, offering a 
rigorous theoretical basis for parameter tuning and 
enhanced convergence rates.

To evaluate the practical efficacy of the proposed 
approaches, extensive numerical experiments were 
performed comparing the f-SCSP method against 
four established algorithms from the literature [28]. 
The findings consistently highlight the proposed 

Fig. 7. The eigenvalues of the matrices  compared 
(a), and the preconditioned matrix  (b), from the 
system matrix in Example 3.1. The eigenvalues spread in 
preconditioned system matrix (b) shows the eigenvalues 
clustered much closer compared to the original matrices 
(a). Note that the axes ranges are not consistent.

Fig. 8. The eigenvalues of the matrices  compared 
(a), and the preconditioned matrix  (b), from the 
system matrix in Example 3.2. The eigenvalues spread in 
preconditioned system matrix (b) shows the eigenvalues 
clustered much closer compared to the original matrices 
(a). Note that the axes ranges are not consistent.

Fig. 9. The eigenvalues of the matrices  compared 
(a), and the preconditioned matrix  (b), from the 
system matrix in Example 3.3. The eigenvalues spread in 
preconditioned system matrix (b) shows the eigenvalues 
clustered much closer compared to the original matrices 
(a). Note that the axes ranges are not consistent.
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method’ reliability, robustness, and computational 
efficiency. Notably, the f-SCSP method exhibit 
equal or superior convergence rates and iteration 
counts, thereby confirming their suitability for 
tackling complex symmetric linear systems.
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